
Computational 
Mathetics

Towards a Science of 
Learning Systems Design

John Self



Computational Mathetics:
Towards a Science of 

Learning Systems Design

 John Self

1995

This is the final version of this document.  Other versions available on-line are all 
labelled ‘draft only’.  Although this version only differs in cosmetic ways from 
them it is probably best, if you want to refer to it, to use something like:
Self, John (1995), Computational Mathetics: Towards a Science of Learning 
Systems Design, Lancaster: Drakkar Press,
http://www.drakkar.co.uk/CompMathetics.pdf.

This document was placed on-line in 2016 by
Drakkar Press Limited, 20 Moorside Road, Brookhouse, Lancaster LA2 9PJ
http://www.drakkar.co.uk, johnselfdrakkar@gmail.com

Copyright ©  Drakkar Press
Photographs (front and back cover) Copyright ©  Pamela Self

All rights reserved.  No part of this publication may be reproduced or used in any 
form by any means - graphic, electronic or mechanical, including photocopying, 
recording or information and retrieval systems - without the prior permission of 
the publisher.

ISBN  978-0-9548605-6-1

DRAKKAR PRESS



Computational Mathetics

Contents

1. Introduction   7
  1.1  The AI-ED context 8
  1.2  What is education? 13
  1.3  What is AI? 14
  1.4  What is AI in Education? 15
  1.5  Outline of the book 16
2. A brief review of AI-ED 18
  2.1  The nature of knowledge 20
   2.1.1 Objectivism 20
   2.1.2 Constructivism 23
   2.1.3 Situationism 25
   2.1.4 Connectionism 26
  2.2  The nature of learning 27
   2.2.1 Failure-driven learning 28
   2.2.2 Case-based learning 29
   2.2.3 Learning through experimentation 31
   2.2.4 Learning through dialogue 32
   2.2.5 Learning as a social activity 33
  2.3  Styles of interaction 35
  2.4  New technologies in education 37
  2.5  Measures of effectiveness 39
   2.5.1 External evaluation 39
   2.5.2 Internal evaluation 40
  2.6  On-going debates 42
3. Introducing computational mathetics 44
  3.1  The need for computational mathetics 45
  3.2  An analogy with aeronautics 55
  3.3  An analogy with computational linguistics 57
  3.4  The definition of computational mathetics 59



  3.5  The approach of computational mathetics 60
  3.6  The language of computational mathetics 66
  3.7  The aims of computational mathetics 69
4. Knowledge    75
  4.1  Behaviour, belief and knowledge 75
  4.2  Propositions and logic 82
  4.3  Modal representations 86
  4.4  Situation calculus 92
  4.5  Structured representations 96
  4.6  Multiple representations 98
  4.7  Social knowledge 102
  4.8  Procedural representations 104
5. Reasoning    108
  5.1  Reasoning schemata 109
   5.1.1 Reasoning in standard logics 110
   5.1.2 Reasoning in nonstandard logics 113
   5.1.3 Reasoning in modal logics 116
  5.2  Limited reasoning 121
   5.2.1 Implicit and explicit beliefs 121
   5.2.2 Local reasoning 124
  5.3  Nonmonotonic reasoning 127
   5.3.1 Circumscription 129
   5.3.2 Default logics 131
   5.3.3 Autoepistemic logics 133
   5.3.4 Multi-agent nonmonotonic reasoning 134
  5.4  Reasoning with inconsistent knowledge 135
  5.5  Probabilistic reasoning 137
   5.5.1 Bayesian networks 140
  5.6  Qualitative reasoning 142
  5.7  Reasoning about time and action 146
  5.8  Diagrammatic reasoning 148
  5.9  Distributed reasoning 153
6. Metacognition  157
  6.1  Meta-level architectures 163



  6.2  Metaknowledge 165
  6.3  Metacognitive schemata 165
   6.3.1 Problem-solving 172
   6.3.2 Metareasoning 178
  6.4  Planning 182
  6.5  Monitoring 188
  6.6  Reflecting 190
   6.6.1 Reflective learning 191
   6.6.2 Self-explanation 194
  6.7  Transfer  196
  6.8  Distributed metacognition 200
  6.9  Attributes, aptitudes and attitudes 203
   6.9.1 Stereotypes 207
   6.9.2 Aptitudes 209
   6.9.3 Affects 210
7. Learning    213
  7.1  Perceptual learning 215
  7.2  Analytical learning 216
   7.2.1 Failure-driven learning 217
   7.2.2 Explanation-based learning 218
   7.2.3 Analogy 221
   7.2.4 Conceptual change and belief revision 223
  7.3  Inductive learning 228
   7.3.1 Version spaces 230
   7.3.2 Numerically-based methods 232
   7.3.3 Constructive induction 234
  7.4  Active situated learning 237
  7.5  Social learning 239
  7.6  Simulated students 242
8. Diagnosis    246
  8.1  Analytical diagnosis 249
   8.1.1 Model-based diagnosis 250
   8.1.2 Differential modelling 259
   8.1.3 Fault-based diagnosis 260



   8.1.4 Explanation-based diagnosis 262
   8.1.5 Diagnosis by metareasoning 264
  8.2  Inductive diagnosis 268
   8.2.1 Numerically-based methods 270
   8.2.2 Diagnosis using inductive 
       learning methods 273
   8.2.3 Diagnosis by automatic programming 275
  8.3  Model maintenance techniques 277
  8.4  Goal-driven diagnosis 281
  8.5  Plan diagnosis 284
  8.6  Interactive diagnosis 294
9. Dialogue    298
  9.1  Discourse structure 302
  9.2  Speech acts 305
  9.3  Dialogue game theory 307
  9.4  Rational dialogue 308
  9.5  Explanation 311
  9.6  Argumentation 316
  9.7  Negotiation 318
  9.8  Multimedia dialogues 324
10. Instruction    328
  10.1  Theories of instruction 330
  10.2  Instructional systems design 337
  10.3  Instructional planning 341
   10.3.1 Lessons 345
   10.3.2 Curricula 346
  10.4  Modes of interaction 347
   10.4.1 Individualised instruction 347
   10.4.2 Tutoring 348
   10.4.3 Group instruction 353
  10.5  Evaluation 355
References      357
Index       373



1  

Introduction

The aim of this book is to help put the design of computer-based 
systems to support learning on a more scientific footing.  The aim 

is simply stated, but its achievement is more difficult.  For one thing, 
it is not obvious what “more scientific” means in this context.

The rather clumsy expression “computer-based systems to support 
learning” will henceforth be abbreviated to “AI-ED systems”, that 
is, “Artificial Intelligence in Education systems” on the grounds that 
the design principles will be primarily derived from and expressed 
in the language of Artificial Intelligence.  It will become clear that 
we intend a broad interpretation of the term ‘AI-ED system’.  We 
mean any computer-based learning system which has some degree 
of autonomous decision-making with respect to some aspect of 
its interaction with its users.  This decision-making is necessarily 
performed on-line, during its interaction with users.  Consequently, 
the system needs access to various kinds of knowledge and reasoning 
processes to enable such decisions to be made.  

Of course, computers may be used as presentational devices, 
through which carefully pre-designed instruction involving the new 
technological media is delivered to students.  There are, no doubt, 
considerable potential benefits in this, as computers enable special 
effects, such as altered time-scales and alluring graphics, to focus 
students’ attention.  However, pre-designed instruction assumes that 
the designer can fully anticipate the reactions of all its users and 
can build in responses to those reactions, or that users themselves 
are sufficiently self-aware that they can reliably decide how to use 
systems (assuming that the required options are, in fact, available).  
It takes no account of the computer’s ability to reason, for itself, 



about the course of the interaction, as we assume that a good human 
teacher needs to do.

As we will discuss, the field of Artificial Intelligence in 
Education (AI-ED) has had a short but chequered history.  The 
initial explorations in the 1970s were marked by the kind of 
enthusiastic optimism characteristic of AI in general.  This early 
work made significant contributions to both AI and Education.  By 
the 1980s, applied AI work on expert systems and several national 
programmes seeking to capitalise on AI research led to an imperative 
to develop AI-ED systems which were practically useful, rather 
than theoretically interesting.  It is notable that few of the AI-ED 
pioneers ever expressed much confidence that the time was right for 
practical development.  Inevitably, the eventual perceived failure of 
the applied projects only confirmed that learning and teaching are 
intrinsically difficult processes.

Meanwhile, the new technologies, especially multimedia and 
networking, promised other solutions to what were considered to 
be serious educational problems.  Consequently, it became unwise 
to continue suggesting AI-ED system development.  Now, however, 
the pendulum is swinging back, again inevitably, as it is realised that 
the new technologies need to be supported by the kinds of analysis 
of learning and teaching which AI-ED research carries out.

Below the ebb and flow of research fashion, there has been 
continuing, if slow, progress in understanding the nature of AI-ED 
system design.  Eventually, this understanding will find a proper 
place in the design of computer-based systems to help people learn.  
AI-ED systems are neither a panacea nor an irrelevance - they have a 
contribution to make.  One of our aims is to help develop techniques 
to clarify its potential contribution.

1.1 The AI-ED context

In order to help place AI-ED systems in a realistic context, let us 
briefly consider four learning vignettes:

8    Computational Mathetics



Aboriginal culture

Until recently, Australian aboriginal children would sit under the 
coolabah tree and listen to stories such as the following:

“Brolga was the favourite of everyone in the tribe, for she was not 
only the merriest among them, but also the best dancer.  The other 
women were content to beat the ground while the men danced, but 
Brolga must dance; the dances of her own creation as well as those 
she had seen.  Her fame spread and many came to see her.  Some also 
desired her in marriage but she always rejected them.  

An evil magician, Nonega, was most persistent in his attention, until 
the old men of the tribe told him that, because of his tribal relationship 
and his unpleasant personality, they would never allow Brolga to 
become his wife.  "If I can’t have her," snarled Nonega, "she’ll never 
belong to anyone else."  One day, when Brolga was dancing by herself 
on an open plain near her camp, Nonega, chanting incantations from 
the centre of a whirlwind in which he was travelling, enveloped the 
girl in a dense cloud of dust.  There was no sign of Brolga after the 
whirlwind had passed, but standing in her place was a tall, graceful 
bird, moving its wings in the same manner as the young dancer had 
moved her arms.”

The brolga is a beautiful grey bird which dances on the flood 
plains of northern Australia.  Many aboriginal myths explain features 
of the environment (animals, rocks, stars, and so on) as being derived 
in some way from human beings.  These stories, which were entirely 
verbal, there being no written form of communication, were accepted 
as truth and dictated all aspects of aboriginal behaviour.  According 
to Roberts and Mountford (1969), young children did not “receive 
any formal education as we know it.  They appear to do just as they 
please.” At a certain age, a youth was taken from the main camp to 
live with the old men of the tribe, the sole repositories of tribal law 
and wisdom, who during many years of training, taught him the laws 
of his community, the relationship he bore to every member of it, 
and the secret myths and rituals of adult life.

All cultures have their myths and rituals which are communicated 
in a similar way.  Only the most fervent technologist would imagine 

1.1    The AI-ED context    9   



that computer systems could or should change these processes in 
any significant way.  Whatever one’s views of Australian aboriginal 
culture, its transmission by some multimedia AI-ED system is a 
bleak vision.

Funfair physics

The traditional funfair provides many opportunities for children to 
learn or reinforce concepts of physics.  The helter-skelter (a high spiral 
slide) gives lessons on centrifugal force, gravity and friction: most 
children can predict the effect of a higher slide or a heavier child, and 
know the direction they will shoot out at the bottom.  The bumper car 
or dodgem is an exercise in the conservation of momentum: children 
soon learn where to bump to cause the maximum effect.  The big 
dipper tells them about potential energy and kinetic energy: children 
know where to sit in the train to experience the greatest acceleration.  
The coconut shy is about force and impulse.  And the ghost train 
warns children not to believe what they see and feel.

Funfairs are increasingly out of fashion but there are many 
other activities which enable children to develop intuitive notions 
of physics.  Nowadays, children are more likely to find amusement 
in computer games, which may show activities violating the laws of 
physics and much else besides.  We can, of course, imagine designing 
computer games which set out to be faithful to real-world physics 
and which may therefore lead to sound intuitive concepts.  Maybe 
such games would help in the transition from intuition to a more 
scientific view of physics.  

In such a case, the computer game might benefit from some 
understanding of the nature of ‘informal’ and ‘formal’ physics.  As 
we will see, AI-ED systems will be concerned with the nature of 
intuitive understandings and how they might be changed, and with 
the degree to which understanding has to be grounded in authentic 
situations.

10    Computational Mathetics



The Play of Daniel

University music students might be asked to write an essay on 
Beauvais’s Play of Daniel, a medieval cathedral play.  The successful 
completion of such a task requires the use of a range of skills and 
knowledge.  Students need to know how to write essays in general, 
which presumes, of course, knowledge of a natural language.  They 
need to be able to adapt the essay to meet the requirements, bearing 
in mind who will read it and for what purpose.  They will need to 
have a broad knowledge of music in order to be able to make sense 
of the unusual Play of Daniel.  They will also need to know about 
the social context at the time the Play was composed in order to 
understand the point of the Play.   

From all this, they will need to know just what points to emphasise 
to make a successful essay.  Not all this knowledge will be to hand at 
the time the task is set, so students need also to know how to acquire 
the knowledge they need.  This might involve knowing how to use 
various computer-based aids for accessing resources.

There are various ways in which computer-based systems might 
support this activity.  Essay-writing is a rather complex skill with 
which computer-based systems will not (in the near future) be able to 
give detailed guidance, although various kinds of clerical assistance 
are possible.  Computer-based systems might be able to give advice 
on how to set about gathering the information probably needed, for 
example, to determine the date of the music and how it was typically 
performed.  They might also be able to monitor the student’s use of 
the resources and to give advice if the student exhibits problems or 
deficiencies in her search strategies.  

Overall, the sheer volume and complexity of the knowledge 
involved suggests that computer systems will not be able to provide 
reliable step-by-step guidance for the whole process.  However, 
given the nature of the students involved, this is not what is required, 
anyway.

1.1    The AI-ED context    11   



Satellite surveillance

Satellite activity analysts are employed by government defence 
departments to maintain dossiers on the behaviour of earth-
orbiting satellites.  In particular, they have to provide possible 
explanations for unusual behaviour, for example, that the satellite 
is mal-functioning or has been diverted to survey Colombian drug 
plantations.  The satellite’s behaviour is displayed on a complex 
computer graphics screen, which must, of course, be interpreted by 
the analysts.  Naturally, their employers would like the analysts to 
develop excellent explanatory skills, because the cost of reacting to 
a faulty explanation can be considerable. 

The analyst’s task is not a simple one of mapping patterns of 
observations onto explanations.  The data is generally voluminous 
but also incomplete and possibly unreliable.  It would not be adequate 
to train analysts to recognise specific situations: they need to be 
helped to develop general explanation-forming skills, in which they 
propose hypotheses, gather evidence for those hypotheses, assess 
the reliability of evidence, and present a convincing argument for 
their conclusions.  

It is hard to imagine this training being successful in a context 
separate from that in which the task is normally performed.  The 
trainee analysts would need full access to the computer display of 
satellites’ behaviour and a way of exploring that system to create 
and test out hypotheses.  In this case, then, the training would 
necessarily be computer-based, being embedded in the system used 
for task performance or in an extension of it.  The computer-based 
system would probably need to know about general hypothesis-
forming skills if it is to guide the trainee towards improving them.  
(I am grateful to the Mitre Corporation for showing me a prototype 
computer-based tutor for this task.)

12    Computational Mathetics



1.2 What is education?

If a field is to call itself ‘AI in Education’, then it seems necessary 
for it to say what it considers ‘education’ to be.  However, despite 

its name, AI-ED has never been concerned with education in its 
broad sense but only with the specific issue of learning.  We may 
believe that the whole purpose of education is to promote learning 
but in reality the process of education includes many activities only 
indirectly related to learning, as any textbook or conference on 
education will confirm. 

The term ‘education’ is generally taken to mean ‘formal 
education’, that is, ‘paid-for education’, rather than the ‘informal 
education’ that we receive for free from our culture.  There is a 
nostalgic preference for the latter, with the former being considered 
to stunt individual learning capabilities.  These polemic views will 
not be our concern.  We will be concerned only with the nature and 
effectiveness of the learning processes.

We will avoid simplistic assertions that learning happens in a 
particular way.  Advocates of one method of learning will naturally 
belittle other methods.  However, learning is a complex, many-
faceted kind of activity, as our vignettes above indicate.  The nature 
of computer-based support for learning will depend on the context 
and there is no particular approach which can be categorically 
labelled as wrong-headed.

Consider, for example, the teaching and learning of a skill such 
as playing the violin.  This has evolved largely outside the formal 
education system and it shows an amalgam of many different kinds 
of activity: a lot of repetitive practice of scales; plenty of ‘academic 
learning’ to develop fluency with musical notation; occasional 
intense one-to-one tutorial sessions; some sessions in a group, as 
music playing is a social activity.  There are specialised ‘learning 
environments’, such as small-scale violins and the Suzuki method.  
None of these learning methods is intrinsically better than the others: 
they must all be integrated in a successful learning experience.

1.2    What is education?   13   



1.3 What is AI?

The key difference between AI and other forms of computer 
programming is that AI programs respond intelligently to 

situations not specifically anticipated by the programmer.  In 
conventional programming, the programmer arranges for anticipated 
problems to be solved by specifying all the steps towards a solution.  
In AI programming, the programmer provides the means for the 
computer to solve problems as they arise.  For example, a program 
to translate between languages could not be written by anticipating 
all possible sentences and providing translations of them, nor even 
by listing all the words and their translations and combining them in 
a simple way.  A comprehensive translation program would need to 
reason about the meaning of the sentences, which implies that it has 
knowledge about both languages, about the content of the sentences, 
and about the world, so that ambiguities may be resolved.

AI is both an applied and a theoretical subject.  AI applications 
are very diverse:

to recognise bridges and buildings from photographs (so that • 
they may be bombed perhaps).
to diagnose diseases.• 
to work as autonomous robots in dangerous situations, for • 
example, underwater mining.
to help plan traffic flow.• 

and so on.  All these applications require skills we would normally 
describe as intelligent: some demand specialist knowledge (for 
example, of obscure diseases); others use everyday knowledge, 
which we all use without being aware of how complex it is (for 
example, recognising what is depicted in a photograph).

Important though AI applications might be, we will be more 
concerned with the theoretical side of AI.  AI is not a science 
that studies objects in the natural world: it studies objects that AI 
programmers create.  In order for these creations to be understood 
and analysed, their design has to be based on clearly-articulated 

14    Computational Mathetics



principles capable of some kind of rigorous analysis.  A program 
for, say, medical diagnosis should be based upon a computational 
theory of diagnosis.  By a ‘computational theory’ we mean one 
that is amenable to conventional mathematical analysis and that 
is oriented towards implementation as a computer program.  It 
should be possible to prove practical results, for example, that under 
specified conditions, a diagnosis will be possible in a certain time.  It 
should also be possible to carry out empirical experiments with the 
program, for example, to measure how it performs under different 
conditions.  The theory develops by coordinating mathematical and 
empirical studies.  In this way, AI leads to the development of new 
theories, because if an adequate theory already existed it would 
presumably be programmed in a conventional way.

However, AI would not be a coherent field of study if every 
application required the development of its own computational 
theory.  It turns out that a theory of diagnosis contains many 
components which are the same or similar to those required for a 
computational theory of, for example, planning traffic flow.  Both, 
for example, require forming hypotheses from observations (a rash 
of purple spots suggests meningitis; a traffic jam suggests a traffic 
light failure), both require a form of hypothetical reasoning of the 
“What would happen if ..” kind, both perhaps require reasoning 
from a library of previous cases so that the system does not have 
to solve every problem from scratch, and so on.  Theoretical AI 
is concerned with the development of methods for analysing such 
processes independent of any particular application.

1.4 What is AI in Education?

The field of AI in Education is concerned with the application 
of AI techniques to educational problems.  Therefore, AI in 

Education is part of applied AI, and indeed most practitioners are 
happy to regard it as so, seeking to develop important, practically 
useful systems based on AI.  Most reports of AI-ED projects give 

1.3    What is AI?    15   



details of the technical design of systems and provide some evidence 
that the systems are effective.  In the next chapter, we will review the 
status and achievements of AI-ED research.

Our emphasis will be more on relating AI-ED to theoretical 
AI.  As an application area, AI-ED is immensely complicated, not 
just because of technical difficulties but more especially because 
education and learning are controversial topics about which there 
are endless arguments.  Any particular AI-ED project has to commit 
itself to a point of view if it is make any progress in implementing a 
useful system, which will then, no doubt, be criticised by those with 
a different view.

AI-ED is interesting because of this constant interplay of ideas 
and it is important because of the potential contribution to the socially 
central aim of improving the quality of learning.  Contributions to AI-
ED come from many directions: primarily from computer science, 
psychology and educational research, but also from sociology, 
anthropology, philosophy and the many fields which are the topic of 
AI-ED systems.  Theoretical debate in AI-ED is generally expressed 
in lowest common denominator terms so that it is accessible to all 
participants, that is, in informal language.  Our aim is to suggest that 
it is time AI-ED begins to move in the direction that all scientific 
endeavours take in due course, by developing a formal, technical 
language which can be used to make arguments more precise and 
AI-ED system design more analytic.  The language of theoretical AI 
is the most promising starting point, because it already has partial 
formalisations of processes such as reasoning, learning, diagnosis 
and dialogue which are central to AI-ED.

1.5 Outline of this book

The next chapter attempts to provide a brief, non-technical review 
of the AI-ED field.  This is somewhat hard to do without lapsing 

into providing a catalogue of AI-ED systems, the various techniques 
used to implement them, and the educational philosophies which 

16    Computational Mathetics



they demonstrate.  It is also difficult because the boundaries of AI-
ED are rather vague.  The chapter tries to give an impression of the 
kinds of issues which concern AI-ED researchers at the moment and 
to indicate the level of practical achievement.  The intention is that 
this chapter provide sufficient background to justify the need for the 
more theoretical descriptions of following chapters.

Chapter 3 introduces what we have chosen to call ‘computational 
mathetics’, for reasons that will be explained there.  The general 
need for computational mathetics and its aims and methodologies 
are described.  In brief, computational mathetics is intended to 
provide the more formal analyses needed to complement present 
informal argumentation and design.  However, the level of formality 
is still low compared to other areas of theoretical AI, reflecting the 
difficulty of AI-ED and the little work so far done in this direction.  
At least this enables the discussion to be followed by those of a non-
formal orientation.

The following chapters each consider a topic within the scope 
of computational mathetics: knowledge, reasoning, metacognition, 
learning, diagnosis, dialogue and instruction, respectively.  These 
chapters review work in theoretical AI and in AI-ED itself from a 
computational mathetics perspective.  There are two main objectives 
in these chapters.  First, to show that there is a large volume of 
potentially relevant work which can be adopted and adapted to form 
a basis for the theoretical analysis of AI-ED research.  If it is, we 
believe that it will lead, in due course, to improvements in AI-ED 
system design.  The second objective is to show that there is much 
that needs to be done before the aims of computational mathetics 
may be achieved and hence to provide some targets and challenges 
for future AI-ED research. 
          
  

1.5    Outline of this book    17   



2 

A brief review of AI-ED

The preface to Wenger’s comprehensive panorama of AI-ED 
before 1987 (Wenger, 1987) remarked that a similar review of a 

field then considered to be at an “important threshold of development” 
would not be possible five years later because there would be too 
much material to review.  There has, in fact, been no general book 
published on AI-ED since Wenger (1987).  All the many books 
related to the topic which have been published since 1987 have been 
monographs describing a particular project or edited collections of 
papers presented at conferences (Bierman, Breuker and Sandberg, 
1989; Birnbaum, 1991a; Brna, Ohlsson and Pain, 1993; Clancey, 
1987; Costa, 1992; de Corte, Linn, Mandl and Verschaffel, 1991; 
Elsom-Cook, 1990; Farr and Psotka, 1992; Frasson and Gauthier, 
1990; Goodyear, 1991; Greer and McCalla, 1994; Lajoie and Derry, 
1993; Larkin, Chabay and Sheftic, 1992; Mandl and Lesgold, 1988; 
Moyse and Elsom-Cook, 1992; Polson and Richardson, 1992; Regian 
and Shute, 1992; Schank and Cleary, 1995; Self, 1988).  

In addition to this spasm of new books, three new journals have 
started up (Journal of Artificial Intelligence in Education, Journal 
of the Learning Sciences, and Interactive Learning Environments) 
alongside longer-established journals with broader remits (such as the 
International Journal of Human-Computer Studies and Instructional 
Science).  It is not easy therefore to gain a broad, balanced picture of 
the contemporary AI-ED field.

This brief chapter can hardly aspire to give such a picture.  It 
aims merely to give a background to the issues which have been 
discussed in recent years sufficient for appreciating the more technical 
perspectives of later chapters.  It is not organised, as Wenger’s book 

18    Computational Mathetics



was, as a historical catalogue of systems and projects.  Today it is not 
possible to identify a similar set of classic on-going projects.  The 
AI-ED field may have been on the ‘threshold of development’ in 
1987 but it has, if anything, stepped back from this threshold rather 
than crossed it.  There has been continued development of perhaps 
smaller-scale systems along ‘traditional’ lines, as we will see, but 
there has been much more debate about the direction of the AI-ED 
field, with many of the pioneers mentioned in the Wenger book 
leading the attempt to change it.

Any review of AI-ED should logically begin with a discussion 
of the educational problems which are being addressed before 
embarking on a survey of how AI might contribute to solutions.  The 
main relevant issues appear to be the following:

What is the nature of knowledge?• 
How may knowledge be learned?• 
Should systems instruct, tutor, guide or train students?• 
How should new technologies be used in education?• 
What are the measures of effectiveness?• 

Educationalists will debate such issues at great length but it is not the 
aim of this chapter to contribute to that debate except to the extent 
that it discusses the AI-ED field’s views (implicit and explicit) on 
them.  The review focusses on providing a basis for considering 
the technical contribution that AI is making and might make to 
education.

The following sections consider each of the above issues in turn.  
Each section illustrates a general discussion about AI-ED’s views 
with exemplar AI-ED systems.  The sections do not attempt to give a 
comprehensive account of implemented systems (there are now too 
many for a short review) and those systems referred to are described 
only to the extent necessary for the point under discussion.  Technical 
concepts are usually only mentioned, with a fuller discussion to come 
in later chapters (although we have not interrupted with a multitude 
of forward references).  The chapter ends with a discussion of the 
main controversies within the AI-ED field today.

2    A brief review of AI-ED    19   



2.1 The nature of knowledge

Most AI-ED systems are intended to help their student-users 
become more knowledgeable in some respect.  AI-ED system 

designers are well aware that education has broader aims - to 
develop ethical and moral values, to improve attitudes, to nurture 
better citizens, and so on - but this awareness has only indirectly 
influenced their system designs.  It has been rather assumed (or at 
least hoped) that the context in which AI-ED systems will be used 
will convey these broader goals.

2.1.1 Objectivism

Given the focus on the knowledge-to-be-learned, it seems natural 
that AI-ED system designers often begin by trying to specify this 
knowledge as precisely as possible.  To achieve this, the full panoply 
of AI knowledge representation techniques (production systems, 
frames, semantic networks, predicate logic, and so on) has been 
applied in AI-ED systems.  In so doing, AI-ED designers might 
be considered to be adopting a philosophy of knowledge called 
objectivism, which holds that the world may be completely and 
correctly structured in terms of entities, properties and relations 
and that rational thought consists of the manipulation of abstract 
symbols viewed as representing reality (Lakoff, 1987).  Thus, an AI 
representation of knowledge might be considered to be an attempt 
to describe this structure and the aim of an AI-ED system might be 
to help learners acquire the entities, properties and relations of this 
‘correct’ propositional structure.

What might be considered the standard approach to AI-ED system 
design is illustrated by SPENGELS (Bos and van de Plassche, 1994), 
a system to help Dutch students learn the conjugation and spelling 
of English verbs, that is, to be able to use the correct form of verbs 
(such as ‘prefer’ and ‘begin’) in sentences such as “He ---- to work 
with pen and paper.”  The first step, as no spelling algorithm already 

20    Computational Mathetics



existed, was to represent as a decision tree the morphosyntactic 
and spelling alternation rules taught in different Dutch textbooks.  
The decision tree effectively asks a series of questions: Is the verb 
form finite?  Which tense is needed? Is the number singular? and so 
on, leading to a node of the tree showing the correct conjugation.  
This algorithm then becomes the basis for teaching the student, 
for deriving correct answers, for checking student answers, for 
determining misconceptions the student may have, and so on.

Some of the knowledge we wish students to acquire is objective 
because it is knowledge defined (by us) to be correct - for example, 
the syntax of programming languages or the allowable operations 
on an algebraic expression.  It is no coincidence that the majority 
of AI-ED systems are concerned with such topics.  The comment 
of GREATERP (Anderson and Reiser, 1985), a beginners’ LISP 
tutor, that “You are within a PROG so you need to use a RETURN” 
leaves no scope for argument about the correctness of this statement 
(although there is scope for arguing about whether the student needs 
to be told so in a particular way and at a particular time).

There are many other domains where it seems necessary to 
adopt an objectivist view, to some extent.  For example, a student 
on a first-aid course must be given the correct way of dealing with 
a child suspected of being accidentally poisoned.  Again, this does 
not necessarily mean that a student must just be told the correct way.  
One can easily imagine that students will understand and remember 
better if they discover the correct way, in this case, preferably by 
experimenting with simulated patients, not real ones.

There are also domains where an objectivist view is adopted 
(temporarily, perhaps) as part of an academic game, by students 
and teachers.  For example, the equations for uniform acceleration, 
although perhaps understood to be not always applicable, may be taken 
as axioms to solve problems.  For English verb endings, although a 
pedant might point out that these endings differ in medieval English 
or American English, if the learner’s context is understood to be 
U.K. English, “preferred” is accepted to be correct.

2.1.1    Objectivism    21   



There is a great debate within AI, and specifically within expert 
systems research, about the extent to which ‘correct’ knowledge 
can be specified in areas where it does not obviously exist.  In the 
case of English verb endings it seems a reasonable expectation 
that correct rules can be specified but in more substantial areas of 
English use such an approach would probably not be contemplated.  
To the extent that correct knowledge can be specified, such expert 
system representations may be used to convey it to students.  The 
prototypical attempt to carry out this programme was the adaptation 
of the MYCIN expert system for medical diagnosis into the GUIDON 
tutoring system (Clancey, 1979, 1987).

However, even within domains for which objectivism seems 
reasonable, it soon becomes apparent that the real learning problems 
lie not in the objective knowledge but in its relation to less objective 
knowledge.  For example, in programming, the focus moves from 
the syntax of the language to aspects such as programming design 
or debugging, where there is no definitively correct knowledge.  The 
BRIDGE Pascal tutor (Bonar and Cunningham, 1988), for example, 
aims to guide the student through the stages of planning a program, 
from the initial English-like description through to the Pascal code.

Similarly, in algebra the issue is not so much what the operations 
are (syntactically) but when they should be applied.  AI-ED algebra 
systems do not just check the correctness of operations (in fact, they 
often perform the operations themselves as that is assumed not to be 
the student’s difficulty) but provide students with an environment 
in which they can experiment with the operators.  For example, 
AlgebraLand (Foss, 1987) displays a problem-solving tree of the 
student’s solution attempt.  This is intended to make it easier for 
students to monitor their on-going solution and to reflect on their 
solution attempts afterwards.  AlgebraLand itself gives no explicit 
tutorial support to these aspects - it only checks that an operator is 
applicable.  The hope is that, relieved of the need to worry about the 
low-level detail of operator application, students will be more likely 
to engage in the desired metacognitive activities.

22    Computational Mathetics



Even when a successful expert system can be built, it does 
not follow that the expertise embedded in it is a suitable basis for 
an educational interaction.  The expert’s performance-oriented 
knowledge may not be based on a conceptual structuring of the 
domain which a learner will understand (Clancey, 1984).  To put 
it another way, many studies have shown expert-novice differences 
which suggest that novices may not learn well from experts.  This 
conclusion is explicit in GREATERP, where the student’s solution is 
not compared to an expert solution but to that of an ‘ideal student’.  
The rules of GREATERP do not summarise expert knowledge 
but are aimed to correspond to conceptual units that novices can 
understand.

2.1.2 Constructivism

A view of knowledge that is often presented as opposed to objectivism 
is that of constructivism, which holds that meaning is imposed on 
the world by us, rather than existing in the world independent of 
us.  Constructivists therefore emphasise the processes of actively 
structuring the world and contend that there are many meanings or 
perspectives for any event or concept, rather than there being a single 
correct meaning towards which a student must be guided.

It does not follow that an AI-ED system which possesses a 
purportedly objective representation of knowledge has to adopt an 
interaction style which violates all constructivist principles.  For 
example, the Socratic dialogues of WHY (Collins and Stevens, 1982) 
do not simply tell students the ‘correct’ conception but aim to help 
them construct one through subtle sequences of counter-examples 
and so on: “Do you think that any place with mountains has heavy 
rainfall?”  “Yes.” “Does southern California have a lot of rain?”

The designer of a system which possesses knowledge which 
is deemed to be correct may, however, be tempted to use that 
knowledge (usually acquired after great effort) in a direct knowledge 
communication mode: “No, southern California doesn’t have a lot 

2.1.1    Objectivism    23   



of rain.”  To avoid such temptations, an extreme constructivist might 
argue that an AI-ED system (assuming that it is still to be deemed an 
AI-ED system) should possess no such knowledge and simply present 
an environment for the student to explore.  The deceptive word here 
is ‘simply’, for it is by no means easy to design environments from 
which knowledge can be discovered.  The most well-known such 
project is LOGO (Papert, 1980, 1993) which has now been subjected 
to numerous studies and its constructivist foundation has become 
rather shaky, as the extent to which LOGO needs to be buttressed by 
other supports has been documented.  

Similarly, the recent enthusiasm for developing hypermedia 
and multimedia systems (Kommers, Jonassen and Mayes, 1992) 
for students to explore has to be tempered by the fact that unaided 
students have some difficulty in negotiating the vast search spaces.  
The technologists’ manifestation of constructivism as microworlds 
and other exploratory environments - often contrasted with the 
tutoring systems of objectivists - is a rather pale image of the 
comprehensive philosophy of constructivism, which is “a discursive 
practice that provides the means through which one can describe 
the social, political and economic circumstances that surround and 
give meaning to a given piece of educational technology” (Sack, 
Soloway and Weingrad, 1994).

Advocates of constructivism might argue that both agents, 
the AI-ED system and the student, should adopt a constructivist 
approach.  In this case, the system would not contain a priori correct 
knowledge but would attempt to discover it in a joint endeavour with 
the student.  The People-Power system (Dillenbourg and Self, 1992) 
illustrates this approach.  The student and the system are supposed to 
design experiments to be carried out on a simulated political system 
in order to determine what makes a system democratic in the sense 
that seats gained in a parliament are proportional to the votes cast 
for the corresponding parties.  Both the student and the system can 
make (fallible) suggestions and interpretations.  There is no target 
‘correct’ knowledge available to the system.

24    Computational Mathetics



2.1.3 Situationism

Situationism (or situated cognition) shares some tenets of 
constructivism but emphasises that the constructed knowledge does 
not exist in memory but rather emerges from interaction with the 
environment.  It is argued that traditional AI, with its emphasis 
on symbolic knowledge representations, has assumed (sometimes 
explicitly, as in the classic Newell and Simon (1972) studies) that 
those representations have psychological reality, in corresponding, 
not literally but functionally, with structures in memory.  Situationists 
argue that representations are created in the course of activity but are 
not themselves knowledge, knowledge being a capacity to interact.  
Both constructivists and situationists deny that knowledge of the 
world can be defined independent of a mind, although the former 
but not the latter might accept that an individual mind creates its 
own idiosyncratic knowledge structures in memory.

The different perspectives of the proponents of situationism 
tend to lead to such a disavowal of one another’s views that their 
intersection seems too small to provide an acceptable, brief summary 
of its principles.  Any attempt, especially by non-situationists, 
to provide a simple statement is invariably met with detailed 
qualifications, conditions, extensions, and so on.  Nonetheless, 
situationism is presented as a revolutionary philosophy providing 
a model of representation (which Bickhard and Terveen (1995) 
call ‘interactivism’) able to overcome the perceived impasse of 
contemporary AI (which they say is based on ‘encodingism’, that is, 
a presupposition that representation has the nature of encodings).

Situationism is very much a subject of debate within AI and 
cognitive science generally and within AI-ED in particular (Bickhard 
and Terveen, 1995; Clancey, 1992a; Hayes, Ford, and Agnew, 1994; 
Hoppe, 1993; Sandberg and Weilinga, 1992; Vera and Simon, 
1993).  As yet, there are no AI-ED systems which clearly illustrate 
its principles.  Most discussions of situationism in AI-ED refer to the 
idea of cognitive apprenticeship (Collins, Brown and Newman, 1989) 

2.1.3    Situationism    25   



but cannot point to any exemplar systems in the way that objectivists 
might point to GREATERP, GUIDON, and so on.  Clancey (1993) 
has, however, listed some principles for designers of such systems, 
contrasting them with the perceived emphases in objectivism-based 
AI-ED approaches:

Participate with users in multidisciplinary design teams.• 
Adopt a global view of the context in which a computer system • 
will be used.
Be committed to providing cost-effective solutions to real • 
problems.
Aim to facilitate conversations between people.• 
Realise that transparency and ease of use is a relation between • 
an artifact and a community of practice.
Relate schema models and AI-ED systems to the everyday • 
practice by which they are given meaning and modified.
View the group as a psychological unit.• 

2.1.4 Connectionism

Connectionism is another view of knowledge which is presented 
as a contrast to the symbol-processing version of objectivism.  
Connectionism holds that knowledge is implicitly represented in the 
weights and links between large numbers of nodes modelled on neural 
networks.  However, although connectionist representations lack 
the kind of symbolism characteristic of objectivist representations, 
they are still very much concerned with representations in memory, 
rather than in the situation.  Connectionist methods have been used 
to develop components of AI-ED systems, but no AI-ED system 
follows a wholly connectionist philosophy, presumably because the 
representations themselves, with only implicit understanding, do not 
easily support learning interactions.

An interesting question, after reviewing how philosophies of 
the nature of knowledge relate to students’ knowledge, concerns 
how those philosophies relate to teachers’ knowledge (or AI-

26    Computational Mathetics



ED systems’ knowledge of how to teach).  Some researchers (for 
example, Clancey, 1987) have attempted to apply the expert system 
paradigm to teaching knowledge and to specify ‘tutoring rules’ to be 
interpreted by an AI-ED system.  This, then, reflects an objectivist 
view that such knowledge exists and can be specified.  Most AI-ED 
systems, however, do not have much explicit knowledge of how to 
teach: it is largely implicit in the way they react to certain situations.  
This might appear to be a situationist approach but, in fact, is not 
because the knowledge is clearly possessed by the system but not in 
a form which it is easy for observers to analyse.

2.2 The nature of learning

Philosophies of knowledge imply philosophies of learning, to some 
extent.  For example, connectionism, with its assumption that 

knowledge exists in the weighted links between the nodes of large 
neural networks, implies that learning is a statistical process whereby 
the weights are adjusted as many examples and non-examples are 
encountered.  Unfortunately, there is no unequivocal mapping from 
philosophies of knowledge to philosophies of learning and it is one 
of the difficulties of AI-ED research that heated arguments about 
the nature of knowledge often lead to similar conclusions about the 
nature of learning, teaching and AI-ED system design.  For example, 
an objectivist might not demur from some of the principles derived 
from situationism listed above, for example, that it is time to move 
on from ‘laboratory studies’ to putting more emphasis on ‘cost-
effective solutions to real problems’.

One of the few attempts to link a theory of learning to that of 
AI-ED system design is that to relate ACT* (Anderson, 1983) to 
GREATERP and similar systems.  The following principles are said 
to follow from ACT* (Anderson, Boyle, Farrell and Reiser, 1989):

Represent the student as a production system.• 
Communicate the goal structure underlying the problem-solving.• 
Provide instruction in the problem-solving context.• 

2.1.4    Connectionism    27   



Promote an abstract understanding of the problem-solving • 
knowledge.
Minimize working memory load.• 
Provide immediate feedback on errors.• 
Adjust the grain size of instruction with learning.• 
Facilitate successive approximations to the target skill.• 

These principles do not follow in the mathematician’s sense of 
being derivable from axioms of the theory but are more like implicit 
implications.  Moreover, the principles do not lead directly to design 
prescriptions.  These weak links make it hard to argue that the success 
(or otherwise) of the systems implemented can be attributed to the 
psychological theory.

Overall, AI-ED system design reflects a rather eclectic view of 
the nature of learning, regardless of views of the nature of knowledge.  
Many different kinds of event and activity can lead to learning and 
many of them have been supported, to some extent, within AI-
ED systems (usually without the dogmatic claims that accompany 
discussions about the nature of knowledge).

2.2.1 Failure-driven learning

ACT* is an essentially objectivist theory emphasising stored schemas 
in memory.  Recently, ACT* has been modified to encompass some 
aspects of constructivism (Anderson, 1993) but these modifications 
have yet to lead to significantly modified principles for AI-ED 
system design.  As they stand, GREATERP and its brothers are 
remediationist systems based on the assumption that learning is 
failure-driven, that is, that the occurrence of failure provides the 
opportunity for learning.

Many other approaches have the basic idea of failure-driven 
learning.  For example, SOAR (Laird, Rosenbloom and Newell, 
1986) is intended to be a comprehensive cognitive architecture based 
entirely on a process of ‘impasse-driven learning’.  An impasse 
is a situation where the architecture has insufficient knowledge to 

28    Computational Mathetics



determine how to proceed.  The impasse triggers a heuristic search 
to create a new operator to overcome it.  Similarly, VanLehn’s 
theory (VanLehn, 1990) is an impasse-driven one, derived from the 
influential ‘repair theory’ (Brown and VanLehn, 1980) originally 
developed to explain how students learned ‘bugs’ in subtraction.

2.2.2 Case-based learning

The ‘failure’ does not have to be a blatant exhibition of lack of 
success: it could just be some evidence which causes the student to 
consider whether their current conception is sound.  For example, 
the idea of case-based teaching (Schank, 1990; Schank and Cleary, 
1995), derived from the field of case-based reasoning in AI (Kolodner, 
1993), is that students learn from stories (cases) presented at the 
precise point of becoming interested in knowing the information 
conveyed by the story.  

For example, DUSTIN is a language-training system with 
which students enter a multimedia simulated environment in which 
they interact with (images of) people they will deal with in their 
work environment.  The student attempts authentic tasks, such as 
checking into a hotel, and on failure is shown a relevant example 
before re-attempting the task.  This approach is an interesting merger 
of objectivist methods (there are ostensibly correct representations 
of how to perform the task) with a constructivist philosophy (with 
rationales such as “in order to assimilate a case, we must attach it 
someplace in memory”) and a situationist style (with the emphasis 
on authentic tasks).

The ‘case’ presented to a student may be
a very short piece of text (as in a counterexample in a WHY • 
dialogue, as above); 
a complex photograph (as in the Sickle Cell Counselor (Bell • 
and Bareiss, 1993), a system designed to teach museum visitors 
about sickle cell disease);
a paragraph giving a case history (as in DECIDER (Bloch and • 

2.2.1    Failure-driven learning    29   



Farrell, 1988), which gives summaries of events such as the U.S. 
invasion of Nicaragua while the student is expressing political 
beliefs);
a longish video (as in JASPER (Crews and Biswas, 1993), • 
where students are presented a story in which the characters are 
faced with challenges that the students must solve).

In the last example, the video becomes a motivating way to present 
complex problems for students to solve.  The use of video supports 
an avowed constructivist philosophy, emphasising that students 
construct knowledge in realistic situations rather than receive 
divorced classroom instruction. Implicit in this approach is a belief 
in learning by problem-solving, an approach also characteristic of 
an objectivist philosophy, which would also emphasise that an AI-
ED system itself should be able to solve the problems it sets.  (In 
fact, of the systems mentioned in the previous two paragraphs only 
DECIDER does not have (or cannot work out) a correct solution.)

A learning by problem-solving approach can be rationalised by 
many different philosophies and supported by many different styles 
of AI-ED system; for example,

GREATERP students solve problems and receive immediate • 
feedback on mistakes (the system being able to monitor each 
step of a solution);
LOGO students receive feedback from the system when • 
solutions are executed but receive no didactic help;
WEST students (who learn arithmetic skills in the context of a • 
simple board game (Burton and Brown, 1979)) are given hints 
from the system if certain constraints are violated;
JASPER students may receive hints to help them improve their • 
solutions (earlier versions of JASPER had students solving the 
problems off-line).

So to say that most AI-ED systems reflect a learning by problem-
solving philosophy is not very illuminating unless the nature of the 
problem and the degree of system support are clarified.

30    Computational Mathetics



2.2.3 Learning through experimentation

A standard scenario is a problem-solving environment in which 
students perform experiments and are guided by the system in 
their interpretation.  For example, QUEST (White and Frederiksen, 
1990) provides a graphic simulation of circuits to enable students to 
understand principles governing the behaviour of those circuits by 
performing troubleshooting operations.  For such an interaction to 
be useful to students, the system’s interventions must be couched in 
terms analogous to those of the student: thus, for novices, the system 
needs representations of naive qualitative physics.  The topic of 
qualitative reasoning is another broad field of AI whose application 
to AI-ED has still to be explored in detail, although it was arguably 
initiated by early AI-ED studies of the SOPHIE system (Brown, 
Burton and de Kleer, 1982).

The tension between extreme objectivist and constructivist/
situationist views is well illustrated by discussions about how 
students might learn the kinds of causal models needed in science.  
An objectivist might present the standard formulas and require 
students to apply them to various (textbook) problems; a situationist 
might expose the student to many real-world instances and hope 
that generalisations will (implicitly, perhaps) evolve.  White (1993) 
argues that causal models of an intermediate degree of abstraction 
can foster learning provided that they are:

Understandable, that is, they build on intuitive notions of • 
causality and mechanism;
Learnable, that is, they generate explanations of key domain • 
phenomena;
Transferrable, that is, the objects and actions within them are • 
represented in a decontextualised form;
Linkable, that is, they help link different levels of abstraction • 
and different model perspectives;
Usable, that is, they can be used to predict, control and explain • 
physical phenomena.

2.2.3    Learning through experimentation    31   



For example, the ThinkerTools curriculum (White, 1993) includes 
a set of interactive simulations, such as the dot-impulse model, 
with which students apply horizontal or vertical impulses (using 
a joystick) to a ball with the objective, for example, of navigating 
a track to stop on a cross.  There are four linked representations 
of motion: the motion of the ball itself, dots indicating the ball’s 
velocity, arrows whose motion indicates velocities along the x 
and y axes, and a datacross, which represents a two-dimensional 
speedometer.  The simulation is intended to help students develop 
the fundamental concepts of Newtonian mechanics such as impulse, 
velocity, force and acceleration.

2.2.4 Learning through dialogue

When students interact with a simulation, they tend to focus on 
tweaking the simulation to achieve the desired short-term effect 
without addressing the mistaken beliefs and conceptions which will 
continue to cause difficulties in the longer-term.  There appears to be 
a need to engage the student in a dialogue to get at the fundamental 
misconceptions.  This dialogue may be with a human teacher, other 
students or a computer-based learning environment - but in any 
case it reflects a constructivist view that knowledge is structured 
by interpreting events, albeit that this interpretation requires the 
mediation of other agents rather than isolated cogitation.  

Along these lines, Pilkington, Hartley, Hintze and Moore (1992) 
describe an environment with which students express and withdraw 
commitments during some debate, the system acting as a ‘referee’ 
using the guidelines of dialogue game theory to determine the validity 
of moves.  Such an interface, it is argued, might help students not 
only clarify their conceptions of the domain under debate but also 
develop general reasoning skills.  Eventually, the nature of such a 
debate may be sufficiently understood that the system itself may 
adopt the role of a player as well.  As Baker (1994) describes, this 
work is derived from many fields of AI (belief revision, agent theory, 

32    Computational Mathetics



distributed AI) and elsewhere (in cognitive and social psychology 
and the language sciences).  

The work on self-explanation, that is, the hypothesis that better 
students spend more time explaining examples to themselves (Chi, 
Bassok, Lewis, Reimann and Glaser, 1989), can be interpreted as a 
theory about the benefits of arguing with oneself.  The self-explanation 
line of research has recently (VanLehn, 1993) been developed into a 
proposed general methodology for AI-ED research:

Collect experimental protocols of learners and divide them into • 
good and poor learners (on the basis of outcome measures);
Investigate what behaviours and processes were different in the • 
two groups (such as, self-explanation);
Develop a cognitive simulation model to account for the • 
identified differences (for example, the Cascade system (Jones 
and VanLehn, 1992));
Design appropriate interventions to cause the more effective • 
behaviour to occur (for example, strategically hide information 
to encourage self-explanation);
Test the resultant AI-ED system.• 

2.2.5 Learning as a social activity

AI-ED research has not taken much account of the social and cultural 
settings within which AI-ED systems have to be designed and used.  
Until recently, the emphasis has been on the technical challenge 
of constructing interesting systems within research laboratories.  
However, when such systems are used in classrooms, the effects are 
not usually as intended (perhaps not surprisingly).  For example, 
Schofield, Evans-Rhodes and Huber (1990) report that when the 
Geometry tutor (based on the Anderson principles itemised above) 
was tested in schools, both teachers’ and students’ behaviours 
changed in not entirely anticipated ways.  Although teachers devoted 
more time to slower students and adopted a more collaborative style 
and students increased their effort on tasks (all presumably welcome 

2.2.4    Learning through dialogue    33   



changes), it was also found that the system increased competition 
among the students.  Because students could progress at their own 
pace (unlike in the normal classroom) and could easily determine 
the progress of their co-students, a race developed between them - in 
fact, 40% of the students attributed their greater effort to the increased 
competition.  The self-pacing feature also led to a modification in 
teachers’ grading practices, as it was now less appropriate to mark 
students on the percentage correct.  Instead they tended to assess on 
the effort invested.

These kinds of observation lead naturally to proposals for ‘socio-
technical design’ (Clancey, 1993), where the emphasis is on designing 
a system within the social and physical context in which it is intended 
to be used.  Such proposals are often couched in political terms, 
presenting such an approach as more ‘democratic’ because it involves 
user groups in the decision-making and control of the systems they 
will use (as opposed to a ‘dictatorial’ approach in which designs are 
delivered to users).  In particular, user-participatory design, a trend 
in human-computer interaction and usability research, has recently 
been applied to AI-ED system design (Murray and Woolf, 1992).  
The project involved:

developing a representational framework for domain content and • 
tutoring strategies that was understandable by educators, 
implementing a set of knowledge acquisition tools, and • 
involving educators in building the system, through conception, • 
design, implementation and evaluation.  

This line of work is part of a broader discussion about the general 
principles of instructional design theory and knowledge acquisition 
in AI.

An extreme objectivist might argue that when all the knowledge-
to-be-learned and the knowledge-of-how-to-teach-it has been fully 
specified, the delivery of AI-ED systems to the classroom will 
not be problematic.  The design will take account of all situations 
and the system will adapt itself accordingly.  This assumes that a 
complete cognitive analysis will subsume the affective dimensions.  

34    Computational Mathetics



As Lepper, Woolverton, Mumme and Gurtner (1993) remark, most 
AI-ED systems only indirectly consider issues such as motivation, 
whereas studies of human tutors show that they devote more time 
and attention to motivation and affect than to the strictly cognitive 
content, especially for certain classes of learners such as remedial 
students.  Human tutors’ techniques for maintaining or increasing 
motivation - based on manipulating the goals of confidence, challenge, 
control and curiosity - can be seen to be implicitly encoded in some 
AI-ED systems to the limited extent that some of these techniques 
seem applicable to such systems.

Situationists would not accept that the goal of explicitly defining 
all relevant knowledge in deliverable AI-ED systems is a sensible 
one.  It simply does not take account of the fact that the teacher-
learner culture is too rich and that the people involved in the use of 
such systems are able to (indeed, must) contribute to successful design 
and use of the systems.  Because situationists hold that knowledge 
does not reside in individual heads, they would also move away from 
one-to-one tutoring systems (which are caricatured as aiming to 
transfer knowledge to individuals) and encourage more collaborative 
learning systems, where understanding is developed by group 
negotiations (as constructivists would accept).  Situationists would 
tend to play down the role of AI within computer-based systems, that 
is, to provide explicit symbolic reasoning, and argue that AI’s role 
is to mediate the collaborative interactions.  They would, therefore, 
seek bridges to work on computer-supported collaborative work and 
computer-mediated communication.  This opens up a debate about 
the nature of educational institutions and students’ activities within 
and without them which would be too broad to pursue here.

2.3 Styles of interaction

The view of teacher expertise embedded in present AI-ED systems 
is, it has to be admitted, rather naive.  This is because the nature 

of teacher expertise is not sufficiently clearly known and because AI-

2.2.5    Learning as a social activity    35   



ED system designers generally do not have themselves or have access 
to such expertise.  In addition, perhaps surprisingly, the teaching 
component has often been considered to be of less importance 
than, for example, the representations of domain knowledge and, 
therefore, has often been added on as an afterthought.

However, the earlier sections have given many examples of 
the various teaching styles adopted by AI-ED systems.  The old 
distinction between theories of learning as being descriptive and 
theories of instruction as being prescriptive is rejected by AI-ED 
research.  For example, VanLehn’s proposed methodology, given 
above, assumes that identifying learning differences will lead 
directly to prescriptions for instructional interventions.

The criticisms of the styles of present AI-ED systems which 
are often made are rather misplaced.  Few of these systems aims to 
provide a comprehensive coverage of either a significant part of a 
curriculum or the range of teaching styles.  Rather, each system is an 
investigation of one style applied to one rather circumscribed topic.  
Thus, we should consider whether the teaching style of a system is 
appropriate for the limited aims that its designers have.  For example, 
it is inappropriate to criticise GREATERP for its domineering style 
of putting students right immediately they stray off the correct path if 
this is an effective strategy for bringing large numbers of beginning 
LISP programmers up to a standard of competence after which more 
subtle strategies may be needed.  Similarly, those systems which 
have a clear training objective, for example, the Space Shuttle Fuel 
Cell Tutor (Duncan, 1992) and Sherlock (Lesgold, Lajoie, Bunzo and 
Eggan, 1992), an avionics troubleshooting tutor, where it is essential 
that students master the operation of complex equipment, may quite 
justifiably adopt an essentially objectivist approach of defining the 
knowledge-to-be-learned and ensuring that students acquire it as 
effectively as possible.

For many AI-ED systems, however, the aims are not so clear-cut.  
Often there is a ‘surface’ objective for the student (to write a program 
to draw a specific shape; to manipulate parameters to maintain an 

36    Computational Mathetics



economic simulation in a stable state; to solve a specific algebraic 
equation) which masks the real objective (to develop various higher-
order skills, such as planning and monitoring solution attempts).  
System interventions directed at the former objective (for example, 
to point out that a program is incorrect) are irrelevant or harmful if 
they interfere with the latter objective.  

Many years ago the designers of the WEST system (Burton 
and Brown, 1979) proposed instructional guidelines such as “do 
not tutor on two successive moves” which only make sense if it 
is accepted that the system’s aims are more than to ensure that the 
student obtains the ‘right answer’.  With such systems the balance 
between ‘guiding’, ‘telling’ or ‘leaving’ the student, and hence the 
whole vexed issue of the balance of control between the learner 
and the system, is a continuing debate.  The specification of precise 
and general guidelines has proved elusive and the design of the 
instructional component of AI-ED systems remains more an art than 
a science, as it does for other educational systems.

2.4 New technologies in education

Regardless of philosophy, psychology, or any other academic 
consideration, it is undoubtedly the case that the new 

technologies increasingly being applied to education have stimulated 
some of the trends discussed above.  For example, the advent of 
high-fidelity multimedia and virtual reality systems naturally 
leads to its enthusiasts arguing for the merits of learning through 
‘immersion in a situation’, which is a variation of the situationist’s 
view.  Similarly, the availability of high-speed networks permits a 
degree of distributed, collaborative working which was previously 
unattainable and this leads to discussions about the intrinsic virtues 
of ‘social learning’ mediated by technology.

This review is concerned specifically with the role of AI in 
education and we will not discuss the technical details of new 
technologies but only the potential relevance of AI to them.  At the 

2.3    Styles of interaction    37   



moment, the excitement with the new technologies owes nothing to 
AI.  However, as the history of educational innovation shows, new 
technologies tend not to deliver all that they promise and it is quite 
predictable that as the limitations of the new technologies become 
clearer, so AI techniques will be adopted to help overcome them.

For example, the successful use of multimedia interfaces 
requires models not only of the media themselves, but of the user, 
task and discourse (Maybury, 1994), aspects that have long been 
studied in conventional AI-ED research.  No doubt existing work 
on, for example, student modelling and discourse management will 
not be immediately applicable and will need to be adapted but this is 
clearly work with an AI orientation. 

Also, the effectiveness of virtual reality as a learning environment 
depends fundamentally on the relation between learning and social 
and perceptual experience, a relationship which is central to AI 
research.  Even at the technical level, preliminary experiments 
have already shown the need for surrogate ‘co-learners’ and other 
intelligent agents in the environment (Shute and Psotka, 1994).

According to Katz and Lesgold (1993), the demand for computer-
supported collaborative learning environments for workplace training 
can best be met by adapting the coached practice environments, such 
as Sherlock (Lesgold, Lajoie, Bunzo and Eggan, 1992), originally 
developed for individual learning.  If so, present AI-ED research can 
be seen as the basis from which the new theories required for these 
environments will evolve.

Whatever the future holds, recent technological advances have 
radically changed AI-ED systems.  A few years ago, a review such 
as this would be profusely illustrated with screen images to show 
student-system interactions, usually involving natural language-like 
typed communication (see, for example, the illustrations in Wenger 
(1987)).  Now, with graphic interfaces and multimedia, it is virtually 
impossible to capture on paper the richness and immediacy of such 
interactions.
 

38    Computational Mathetics



2.5 Measures of effectiveness

AI-ED research has the misfortune to be concerned with a field of 
application of AI (that is, education) which is riven and driven 

by demands for evaluation.  No other field has such an ethos of 
evaluation built into it and therefore, compared to other areas of AI, 
AI-ED needs to take evaluation very seriously.  We can distinguish 
two kinds of evaluation - those of complete systems (summative or 
external evaluations), which generally attempt to demonstrate some 
educational benefit of the system as a whole, and those of components 
or prototypes of systems (formative or internal evaluations), which 
generally aim to investigate the properties of parts of systems so that 
may be improved.

2.5.1 External evaluation

The evaluation of any educational innovation, including AI-ED 
systems, is inherently difficult (Mark and Greer, 1993; Winne, 1993).  
However, because of the expense of AI-ED system implementation, 
the demand for successful evaluations is quite reasonably made.  It 
is only recently that AI-ED research has been able to respond to 
the challenge by carrying out large-scale empirical studies which 
show the benefits of AI-ED systems in real educational settings, for 
example, the evaluations of:

The Geometry tutor, as mentioned above (Schofield, Evans-• 
Rhodes and Huber, 1990).
SMITHTOWN, a discovery world that teaches scientific inquiry • 
skills in the context of microeconomics (Shute and Glaser, 
1990).
Sherlock, where twenty hours using the system were judged • 
to be as effective as two years ‘on the job’ (Nichols, Pokorny, 
Jones, Gott and Alley, 1993).
A STATICS tutor, where the instructional design effort per hour • 
of instruction time was about 85 hours, compared to 100-300 

2.5    Measures of effectiveness    39   



hours for traditional CAI (Murray, 1993).
The Space Shuttle Fuel Cell tutor, where NASA trainers were so • 
convinced of its superiority over alternatives that it was adopted 
without need for a formal evaluation (Duncan, 1992).

2.5.2 Internal evaluation

These evaluation studies, however, use standard educational 
techniques with AI-ED products but do not themselves use AI 
techniques.  More relevant to this review is the possible use of AI 
for evaluative purposes.

Any AI-ED system is an implementation of a (usually implicit) 
theory of learning and instruction.  If the theory were sufficiently 
explicit it could be expressable in executable form and the outcomes 
from the AI-ED system could be predicted by running the system 
with ‘simulated students’.  VanLehn, Ohlsson and Nason (1994) 
consider the possible uses of simulated students to support teaching 
training, to enable an AI-ED system to act as a collaborative partner, 
and to permit formative evaluations.  In the last case, for example, 
one can, in principle, determine which is the better of two proposed 
instructional designs by seeing which leads to better learning of the 
simulated students.

In this way, an AI-ED system may be used for formative 
evaluations before being used with real students.  This is standard 
practice in other fields of computer use, but its usefulness in AI-ED 
may be doubted because of our lack of faith in the soundness of 
the theories of learning concerned.  The principle, however, seems 
sound.

Similarly, we can imagine applying the student modelling 
component of AI-ED systems to assist with the thorny problem 
of assessment (Martin and VanLehn, 1993).  Most AI-ED systems 
which are not entirely exploratory environments maintain some kind 
of student model, that is, some representation of what it is believed 
the student has understood.  This student model may be used for 

40    Computational Mathetics



many purposes within an AI-ED system, for example, to determine 
appropriate problems to set, to provide remediation feedback, and so 
on.  Many techniques have been developed to build student models, 
some derived from well-known AI techniques such as:

discriminative concept learning (Ohlsson and Langley, 1988), • 
where the aim is to induce the student’s problem-solving 
procedure from observations of his correct and incorrect results;
resolution from computational logic (Costa, Duchénoy and • 
Kodratoff, 1988), where the technique is used to suggest and 
prove hypotheses about a student’s beliefs;
neural networks (Mengel and Lively, 1991), where the network • 
is trained to simulate a student’s cognitive processes;
fuzzy logic (Derry and Hawkes, 1993a), to provide an • 
approximate diagnosis, recognising that a student’s behaviour is 
not entirely consistent and induction from it is risky;
Bayesian networks (Katz, Lesgold, Eggan and Gordin, 1994), • 
also to provide a less precision-oriented approach to student 
modelling;
model-based diagnosis (Self, 1993), to cast the student • 
modelling problem in terms of general diagnosis in AI;
logic meta-programming (Beller and Hoppe, 1993), to • 
reconstruct hypothetical solution paths to check against 
constraints associated with correct solutions;  
belief revision (Kono, Ikeda and Mizoguchi, 1994), to keep the • 
model consistent with observations.
The need for and success of these methods remains a controversial 

topic within AI-ED research (Lajoie and Derry, 1993; Spada, 1993).  
To the extent that these techniques are successful and so provide a 
useful evaluation of an individual student (useful in the sense that 
it may support individualised interactions) they may be used for 
assessment purposes.  Educationalists must argue about the ethics of 
computer-based assessment and about whether what can be reliably 
assessed in this way is in fact what should be assessed, but again the 
principle seems sound: many AI-ED systems aim to build student 

2.5.2    Internal evaluation    41   



models and to the extent that this is possible it may form a basis 
for assessment of the student and an evaluation of the system’s 
effectiveness in helping that student to learn.

2.6 On-going debates

Education has been a controversial topic for two millennia at 
least: AI has been equally controversial for rather less long.  

AI in Education is bound to provoke debate.  After two decades, a 
body of techniques has been developed which are beginning to be 
consistently re-applied in new systems.  Some early AI-ED concepts 
are now routinely used in off-the-shelf computer-based learning 
systems: for example, a $50 typing tutor uses a student model with 
a bug catalogue to generate new practice lessons as needed.  Some 
larger-scale AI-ED systems have been shown to be effective within 
larger organisations such as the military (as discussed above).

But still there is considerable argument about AI-ED research.  
Some of the arguments have been touched on earlier.  We conclude 
by mentioning some more general questions:

Is AI a dangerous metaphor for education?  For some critics, AI • 
is seen as supporting a rather behaviouristic approach to learning, 
in that it aims to adapt the learner the conform to the knowledge 
embedded in the AI system.  As we have indicated, this is a 
simplistic characterisation of only a sub-class of AI-ED systems.
Can AI-ED systems support student autonomy and open learning?  • 
The more that intelligence is put within AI-ED systems, the 
more the temptation may be to apply it to control and direct the 
student’s interactions with the system.  However, the range of 
AI-ED systems includes much more than overbearing tutoring 
systems.
Will AI-ED systems ever be used in real educational settings?  Of • 
course, this depends on what is understood by a ‘real educational 
setting’.  The traditional school classroom is perhaps not a very 
promising setting for many systems, but the organisation of 

42    Computational Mathetics



classrooms is changing rapidly.  It also seems likely that more 
learning will occur outside the official classroom as access to 
computer technology improves and individuals learn at home or 
at work, for their own interest or career development.
What will be the impact of new educational technologies and what • 
role will AI play within them?  At the moment, we are in a phase 
where the radically different nature of the new technology has 
side-lined AI.  Eventually, however, there will be a merging of the 
more software-oriented field of AI-ED with the more hardware-
oriented advanced learning technologies.
Will AI-ED research continue to progress through the rather • 
unprincipled implementation of demonstration systems, or will 
some theoretical basis for AI-ED system design be developed?  
Currently only certain components of AI-ED systems are amenable 
to any kind of theoretical analysis and no comprehensive ‘theory 
of AI-ED systems’ is likely in the near or medium-term future. 
Do AI-ED systems reflect a reasonable view of the nature of • 
knowledge and learning?  This brings us full circle.  As we have 
discussed, there is no consensus within AI-ED research about 
these issues and we can find examples of systems which reflect 
many different philosophies.  Apart from the perception of AI-ED 
research as a field oriented towards producing practically useful 
systems, AI-ED may also provide a more technical contribution 
to such fundamental debates.

2.6    On-going debates    43   



3  

Introducing computational mathetics

The previous chapter aimed to provide a non-technical overview 
of the AI-ED field.  You will have seen that the chapter did not 

use a single →, ¬, Ɵ, Ɐ or any of the other formal symbols which 
adorn texts in other fields of AI (and AI-ED is still considered to be 
a field of AI - for example, “intelligent teaching systems” is one of 
the topic areas for the major AI conference of 1995).  In this, the 
chapter is not being unduly lenient with the reader, for much the 
same can be said of all the books mentioned at the beginning of 
chapter 2.  They all have a predominantly wordy style, in which 
concepts and issues are discussed in informal natural language, 
perhaps enlivened with the occasional illustrative screen-shot, but 
devoid of any formal definitions, theorems, axioms, derivations, and 
the like.  Superficially, then, AI-ED is very different from general 
AI, as is apparent from only a glance at the major AI journals and 
conference proceedings.

This would not matter at all if AI-ED were indeed a very different 
subject from general AI, whose methodologies were considered 
inappropriate for AI-ED.  On the other hand, if AI-ED is to make a 
distinctive contribution to education, which I assume is the ultimate 
aim, then it must come, by definition, from the unique attributes 
of AI itself.  AI-ED researchers must engage in broad educational, 
philosophical, psychological and sociological discussions but it 
would be rather arrogant of AI researchers to imagine that whatever 
expertise they have in AI enables them to resolve such long-standing 
debates.  Whenever opinions are offered on such issues they risk 
being immediately dismissed as naive and unoriginal by those 
expert in the respective fields.  For example, even the influential 

44    Computational Mathetics



situated learning proposals of Collins, Brown and Newman (1989) 
and Brown, Collins and Duguid (1989) were welcomed with a tone 
of condescension - both Palinscar (1989) and Wineburg (1989) 
commented on the lack of references to related earlier work by 
Dewey, Vygotsky, Bruner and others, with Wineburg remarking that 
“one hopes that these ideas will interact with their antecedents and 
surpass them in the rigour of their formulation.”

The challenge of contributing to broad educational debates is 
one that AI-ED must continue to face, but not necessarily in terms 
set by others.  Rather than AI-ED attempting just to contribute in 
areas which already have established traditions and paradigms - and 
ones which, if we wished to be argumentative, we could claim have 
not been entirely fruitful - it could ask, or insist, that the debates be 
represented in its terms, that is, in the language of AI, and so perhaps 
provide the rigour which Wineburg and others profess to desire.  To 
put it simply, the technical language of AI would be offered as a 
means of clarifying debates.  Moreover, that language of AI, if it 
is found appropriate, would provide a much more direct link to the 
design of computer-based systems to promote learning.  This, then, 
is the objective of the following pages but first it is worth reflecting 
on recent AI-ED developments.

3.1 The need for computational mathetics

Although it would be nice to imagine that the AI-ED field 
makes rational, scientific progress based on purely academic 

considerations, we must also take into account the social and cultural 
context in which AI-ED research is carried out, just as AI-ED itself 
is increasingly being urged to take into account such factors when 
designing AI-ED systems.  In the twenty years from 1967 or so (when 
Carbonell and Wexler began their PhD projects (Carbonell, 1970; 
Wexler, 1970)), AI-ED research proceeded rather serenely, producing 
a body of work, surveyed in Wenger (1987), which seemed to lay 
out a panorama ripe for further investigation.  In fact, the field then 

3    Introducing computational mathetics    45   



underwent a convulsion in which many of the tenets of the previous 
work were challenged - a convulsion led, perhaps predictably, by 
Wenger himself and his foreword-writers, Seely Brown and Greeno, 
who all, along with others, explicitly disassociated themselves from 
the ‘knowledge communication’ theme of the book and its basis in 
standard symbolic artificial intelligence.  

Suddenly ‘intelligent tutoring systems’, which had become 
a broad term encompassing a range of AI-based systems (few of 
which were actually tutoring systems in the sense subsequently 
caricatured), became a term to avoid.  Instead, AI-ED researchers 
were urged to widen their horizons beyond the panorama sketched in 
1987, by taking account of previously neglected work in disciplines 
such as psychology, sociology, anthropology, linguistics, philosophy 
and biology in order to provide a theoretical rationale for the new 
kinds of learning environment made possible by new learning 
technologies such as multimedia, conferencing, and virtual reality.

Clearly, this was a timely development, for ITS research was 
in danger of becoming too blinkered.  And yet, there were two odd 
features with this revolution.  First, it was entirely US-led.  Of course, 
this may not be thought odd, for most things are US-led, but pockets 
of AI-ED research existed in Europe, Canada, Japan and elsewhere 
and they were almost without exception puzzled by the missionary 
fervour with which the new paradigms were preached.  Having come 
to many of the same conclusions about the status of AI-ED research, 
they tended to prefer a more evolutionary approach, rather than an 
explicit disavowal of all previous work.  In some cultures, such as 
the Japanese, there was bewilderment at the idea that they were no 
longer supposed to talk about ‘communicating knowledge’.

The second odd feature was that inspiration for the new 
approaches came mainly from European scientists and philosophers 
- Vygotsky, Leontiev, Heidigger, Marx, Piaget, Wittgenstein, Levi-
Strauss, Bartlett - many of whom did not have English as their 
mother tongue and most of whom were unfortunately no longer with 
us.  This had the effect that the inevitably obscure translations of 

46    Computational Mathetics



their original writings could be imbued with all kinds of profound 
meanings which could not be fully resolved by reading the original 
text (for English-speakers, anyway) nor, of course, by asking the 
writers to elucidate.  In some cases, the ideas had to some extent been 
absorbed into European thinking and it was difficult for Europeans 
to see what all the fuss was about.  For example, the new emphasis 
on ‘socio-technical design’ seemed at first to ignore the fact that 
schools at Manchester and in Sweden had been advocating this for 
forty years.  Sack, Soloway and Weingrad (1994) describe how their 
ideas about AI-ED system design have evolved as a result of their 
foray “into the wilderness of continental philosophy.”

Anyway, it is clear that the significant recent changes in AI-ED 
research, especially in the US, are partly a product of the US culture, 
and therefore we should consider the situation as it was in the US in 
the mid-1980s, when the changes began.  The paper which is now 
considered to be the catalyst for the ‘revolution’ (Collins, Brown 
and Newman, 1989, written in 1986) commented that “Current 
work on developing explicit, cognitive theories of domain skills, 
metacognitive skills and tutoring skills is making the crucial first 
steps in the right direction”: hardly a clarion call for a revolution!  The 
paper’s points are illustrated by referring to standard AI-ED systems 
of the time.  Similarly, Wenger (1987) appeared to indicate that the 
foundations had been laid and it was time to cross the ‘threshold of 
development’.

However, a more careful reading of Wenger (1987) indicates 
that he and others had misgivings about the direction of AI-ED 
research.  His organising theme, ‘knowledge communication’ is first 
(p7) defined as “the ability to cause and/or support the acquisition 
of one’s knowledge by someone else, via a restricted set of 
communication operators.”  However, by the end of the book (p431)
he has developed a view of knowledge communication in which 
“both the knowledge states involved in knowledge communication 
are modified: knowledge communication is viewed as a dynamic 
interaction beween intelligent agents by which knowledge states are 

3.1    The need for computational mathetics    47   



engaged in a process of expansion and articulation.”  Similarly, as 
one reads his individual project descriptions, which are uniformly 
and exaggeratedly complimentary, it is striking that many of the 
protagonists were in fact withdrawing from the original aims of their 
projects.  Subsequently, many have explicitly or implicitly disavowed 
their earlier work and have advocated different methods or have 
moved out of AI-ED entirely (Brown, 1990; Clancey, 1992b, 1993; 
Collins, 1988; Greeno, 1989; Lave and Wenger, 1991; Sleeman et al, 
1989; Soloway et al, 1992).

There may be an element of getting one’s criticism in first here.  
By the late 1980s, intelligent tutoring systems research had developed 
a reputation for failing to deliver what it promised or, rather, what 
had been promised on its behalf (the acronym ITS was sometimes 
rendered as ‘invisible tutoring systems’).  AI-ED researchers knew 
better than outside critics the reasons for this perceived failure and 
it was perhaps politically sensible to admit the error of one’s ways 
and to propose radically different solutions.  Whatever the reason, 
there was a sense of despair.  Sack, Soloway and Weingrad (1994) 
comment that 

“we made large catalogs of bugs we observed in student programs, 
gave them very long and complicated names, and then organized 
them into taxonomies.  Unfortunately, these lists of bugs with formal 
identities never made it out of the laboratory and into the classrooms 
... our old bug taxonomies are of no educational interest ... [now] we 
want to put powerful, real-world tools in the hands of students so that 
they might have the opportunity to create transitional objects which 
will serve to introduce them to the society-at-large.”  

Similarly, Clancey (1993) considers that 
“Despite the use of advanced computer technology in the 1990s, 
the dominant form of instructional design in schools and industry 
is 1960s-style page-turning presentation.  No commercial authoring 
tool has the complexity of GUIDON.  At the same time, researchers 
in industry are finding that expert-system techniques, hatched in 
university laboratories, are inadequate for developing useful programs 
that fit into people’s lives.... After more than a decade, I felt that I 

48    Computational Mathetics



could no longer continue saying that I was developing instructional 
programs for medicine because not a single program I worked on was 
in routine use.”

These ‘failures’ may be more ones of unrealistic expectations.  
O'Shea and Self (1983) had predicted that

“computerised tutors will play a minor role in education for many 
years to come.  A few tutorial programs will be generally available 
in 1992, but there will be little incentive to develop more.  The type 
of application where there is an incentive is in areas where failures 
in training result in great cost.  For example, if errors in operating 
nuclear power plants could be reduced by training with an expert 
teaching system (like SOPHIE but incorporating a simulation of a 
power plant) then such a system might well be developed.”  

As mentioned in chapter 2, we do have a few off-the-shelf tutors, 
like SPENGELS, and most of the significant on-going AI-ED projects 
are in the area of expensive training projects, such as Sherlock and 
the Space Shuttle tutor.  Our conclusion in 1983 was that ITS research 
should continue, despite this ‘failure’ to deliver products, because of 
its academic interest and longer-term potential.

However, in the US, at least, there was considered to be some 
urgency to find other ways of solving educational problems.  In this 
context, the Institute of Research on Learning and the Institute for 
the Learning Sciences were established and they naturally had to 
advocate methods different to the failed ITS ones.  The former’s aim 
appeared at first to continue the line of ITS research, for according 
to the inaugural speech of George Pake, the first director of IRL, on 
November 12th 1986: 

“The institute will work on artificial intelligence systems for traditional 
classroom learning, as well as for training in the workplace.  The 
focus of our research will be on how children and adults think and 
learn, and on expert computer systems that can coach them the same 
way a personal tutor would.” 

The IRL would work in association with cognitive scientists, 
sociologists, education professionals and anthropologists - the last 
because “anthropologists are experts in human beings as social 

3.1    The need for computational mathetics    49   



animals ... Most of what we learn, we learn with others.”  The 
distinctive approach of IRL was thereby established, to become 
stronger over the following years.

The Institute for the Learning Sciences aimed to go “beyond 
today’s generation of simulators and ‘intelligent tutors’” and develop 
‘discovery systems’ (Schank and Edelson, 1989):  

“A ‘discovery system’ encourages a student to become an active 
learner by forcing him to generate hypotheses, test them, and revise 
them.  The system develops the student’s capabilities as a case-based 
learner by providing him with relevant cases at appropriate moments.  
It enables the student to learn through failure and encourages 
creativity by inviting him to pursue any hypothesis without attaching 
a stigma to possible failure.  Finally, it allows the student to learn 
through experience by providing him with the opportunity to explore 
a simulated environment, while at the same time allowing him to learn 
from the experience of others through exposure to relevant cases.” 

Changes in AI-ED do not occur in a vacuum: they are part of 
more general attempts to change educational practice.  A paper by 
Cohen (1989) is sometimes quoted to support the new mission of 
computer technology in education.  This essay traces a history of 
teaching practice, discusses the ‘new pedagogy’ and considers the 
difficulties facing its adoption.  Here are three quotations which 
might help us to understand what is happening in US education, and 
hence in AI-ED.  First, 

“Consider first the view that knowledge is purely objective - that it is 
discovered, not constructed.  This notion has deep roots in medieval 
Europe.  Recall that educated men of that age worked from hand-
copied manuscripts that had survived the collapse of a glorious 
Empire, or found their way into Europe from more sophisticated 
eastern civilizations... Scientists and philosophers in the seventeenth 
and eighteenth centuries worshipped a rational Nature.  They believed 
in the objectivity and authority of sciences that would open nature’s 
lawful heart to investigators... During most of the modern age, then, 
there was little argument about the objectivity of knowledge, nor 
about the great authority of such knowledge... Only very recently 
have these old and deeply rooted ideas been broadly questioned.”

50    Computational Mathetics



History is in the eye of the beholder and alternative views are 
possible.  The above quotation concerns an alleged prevailing 
philosophy of knowledge which if it did prevail then it did so in 
Europe, America and elsewhere until science itself indicated that 
it was untenable through the uncertainty principle, relativity, 
chaos theory and Goedel’s theorem.  However, the philosophy of 
objectivism does not necessarily entail a particular pedagogy, nor 
vice versa.  The most influential teacher for Western society was 
arguably Jesus Christ, whose methods clearly followed the ‘new 
pedagogy’ rather than an objectivistic philosophy.  His enigmatic 
parables were couched in ‘authentic’ situations and their meaning 
had to be constructed by listeners, as indeed they still are today.  
Similarly, in Chinese society, the writings of Confucius are still 
revered and re-interpreted after 2500 years.  

It is fairly clear that before medieval times versions of the 
new pedagogy were dominant.  From medieval times almost all 
those who wrote about educational philosophy (such as Erasmus, 
Locke, Rousseau, Comenius and Froebel) espoused views which 
were more constructivist than objectivist.  In fact, in all the recent 
constructivist writings that I have read I have yet to see a direct 
quotation from any educational philosopher arguing that knowledge 
should be ‘transmitted’.  Instead they invariably infer and attribute 
a philosophy from the practice.  It could well be that practice was 
dictated by social and other factors rather than by philosophy.  After 
all, what else could medieval monks do but laboriously transcribe 
rare texts?  Cohen quotes the American icon Mark Twain’s story 
of learning to become a Mississippi riverboat pilot to indicate that 
there was a popular rebellion against ‘formal education’.  Similar 
stories are common in European literature.  For example, there can 
be no more biting satire on ‘knowledge transmission’ than Jonathan 
Swift’s Gulliver’s Travels (1726): 

“I was at the mathematical school, where the master taught his pupils 
after a method scarce imaginable to us in Europe.  The proposition 
and demonstration were fairly written on a thin wafer, with ink 
composed of cephalick tincture.  This the student was to swallow 

3.1    The need for computational mathetics    51   



upon a fasting stomach, and for three days following eat nothing but 
bread and water.  As the wafer digested, the tincture mounted to his 
brain, bearing the proposition along with it.”  

Similarly, Charles Dickens’s Thomas Gradgrind of Hard Times (1854) 
is made a ridiculous figure for his ‘facts, facts’ philosophy.  In short, 
popular educational philosophy never did support objectivism.

The second quotation from Cohen (1989) is, following on a 
discussion of the impediments to adopting the new pedagogy:  

“But where is it written that change will occur if only the ‘obstacles’ 
are removed?  It is easy to understand why such an assumption would 
be common among educators, in view of many reformers’ insistence 
that adventuresome teaching is possible anywhere.  The idea that 
change is normal is particularly easy to understand among a people 
that embraces the idea of progress as avidly as Americans do.  But why 
should researchers adopt these assumptions?  Why should we accept 
that improvement is to be expected, or that change is the normal state 
of affairs?  It may seem un-American, but perhaps stability is to be 
expected in teaching.”

We should not pass over the phrase ‘adventuresome teaching’.  
This term is not defined anywhere but it is another loaded term (like 
‘constructivism’ itself) which can only be denied by painting oneself 
into a corner labelled ‘unadventuresome teaching’ (or ‘destructivism’, 
‘obstructivism’ or, even worse, ‘instructivism’).  If we paraphrase it 
to, say, ‘risky teaching’ then it is not so obviously a good thing.  
Anyway, the main point is that American culture "embraces the idea 
of progress" more than others, that change is conflated with progress, 
and that the ‘new pedagogy’ is, by definition, change.

Finally: 
“Recent efforts to make teaching more adventurous thus are a modest 
and recent chapter in a much larger and older story.  Our struggles 
.. are only a few episodes in a gathering collision between inherited 
and revolutionary ideas about the nature of knowledge, learning and 
teaching... Efforts to sort out the intellectual content and practical 
implications of both traditions have only just begun, under the pressure 
of conflict and challenge.  This is true even in the United States: 
While it is the nation most deeply committed to the new pedagogy, 

52    Computational Mathetics



efforts to try the new ideas out in practice here still are isolated and 
quite fragmentary.  Other countries, like France, Germany, or Spain 
remain largely untouched by new instructional ideas and practices.  It 
seems reasonable to suppose that we are working on the frontiers of 
this great collision.”

So, the new pedagogy is in the great American tradition of frontier-
crossing.  While in the US change is the normal state of affairs, other 
cultures ignore new ideas, for some reason.  If everyone’s cultural 
context were one in which, as in Chicago, on an average day 19% of 
the schoolchildren are playing truant then we might all believe in the 
need for adventuresome teaching (it would be an adventure to find 
the children, at least).

Actually, constructivism is a broad philosophy with adherents in 
the arts, humanities, social sciences and only relatively recently in 
education and technology.  The term (or at least the Russian equivalent 
of it, konstruktivisma) was apparently first used by Russian artists 
in the early 1920s, who, in the aftermath of the revolution and the 
World War, were reacting against the straightjacket of production 
art and Marxist doctrine.  Gan (1922) wrote that “constructivism 
is a phenomenon of our age.” A ‘Manifesto of International 
Constructivism’ was signed in September 1922.  The meaning of the 
term has evolved as it has been used through the century by artists, 
architects, linguists, and others, but its core still resonates with its 
recent adoption by educational technologists: 

“What can be stated quite categorically about constructivism is that 
it rejects the comfortable assumption of a ‘given’ harmony between 
human feeling and the hostile world.  In contrast, it implies that man 
himself is the creator of order in a world that is neither sympathetic 
nor hostile, and that the artist must play a central role in determining 
the type of order that is imposed.” (Bann, 1974).

Intriguingly, the term ‘situationism’ also has a pedigree in the 
arts.  There was an exhibition of situationist art held at the Centre 
Georges Pompidou and the Institute of Contemporary Arts in April 
1989.  The Situationists were an avant garde group of the 1950s and 
1960s whose activities had a revival of interest in the late 1980s.  The 

3.1    The need for computational mathetics    53   



key features of their work were iconoclasm, a sense of purpose, an 
aura of radicality and by inference authenticity.  So-called Specto-
situationists claimed to have played a key role in stimulating the 
Paris riots of May 1968.  I cannot resist giving a short extract from 
a transcript of a conversation between the art critics Ralph Rumney 
and Stewart Home, discussing the exhibition: “It was what was 
actually done that was important, far more than the theory.  Theories 
are evanescent.  Situationist theory was intentionally inspissated, to 
make it difficult to understand and extremely difficult to criticise.  
And also to give an impression of complete originality!”

The Cohen essay is about education in general and says nothing 
directly about AI-ED.  However, we can see the same re-writing 
of history happening over the much shorter timescale of AI-ED.  I 
do not believe that many ITS researchers of the 1970s and early 
1980s held the philosophies now attributed to them (if so, where are 
the quotes?).  Like the medieval monks, they were doing what they 
could with the technologies of the time.  I also do not believe that 
the foundations laid then will turn out to be completely irrelevant to 
the design of AI-ED systems to support the new pedagogy, whatever 
it turns out to be.

This discussion of the recent history and context of AI-ED 
research unfortunately violates the very principles which we aim to 
advocate.  It engages in a vague polemical debate about very general 
issues which do not necessarily impact directly on the design of 
systems.  The purpose of the above discussion is not to denigrate 
alternative approaches, for that would be to join an unnecessarily 
confrontational debate setting up false dichotomies.  It is essential 
for AI-ED research to take better account of the concepts of situation, 
context, community, discourse, social learning, and so on, but these 
terms need to be defined, not used as mantra.  The language of AI is 
offered as a way of defining and then analysing such concepts.  That 
will be the aim of ‘computational mathetics’.  First, however, it will 
be fun to consider two analogies, risky though they always are.

54    Computational Mathetics



3.2 An analogy with aeronautics

It has been said that the design of computer-based learning 
environments is a form of  ‘educational engineering’.  If only it 

were so.  The ‘educational engineering’ term is based on a derogatory 
characterisation of engineering as the undisciplined design of 
devices by tinkering with them until they appear to work.  Modern 
engineering is different.  Let us consider the case of aeronautical 
engineering.

After Greek mythology, Leonardo da Vinci (1452-1519) was the 
first person to develop detailed proposals for a flying machine, all 
based on flapping wings.  These could never work because it is not 
possible in this way to attain the energy output per unit weight that 
birds achieve.  The breakthrough - to base the design on a soaring 
bird not a flapping one - was made by Sir George Cayley (1773-
1857), who in 1799 designed an airplane, indicating the lift and drag 
forces in his drawings, whirled his models through the air to carry 
out experiments, and published his results in the Journal of Natural 
Philosophy in 1809.  Although this work explained the fundamental 
concepts necessary for flight, it was forgotten and the later aviation 
pioneers proceeded in ignorance of it.

Otto Lilienthal (1848-1896) was the first person to fly heavier-
than-air craft in a more or less reliable fashion.  He published a 
book on Bird Flight as the Basis of Aviation in 1889 and considered 
that the only way to develop a deeper understanding was to engage 
in actual flying experiments himself.  Accordingly, he made 2000 
glides, before he crashed and died in 1896.  

The Wright brothers systematically studied the writings of 
Lilienthal and others and began their own test flights of gliders in 
1900.  They built a wind tunnel to study wing design, discovering 
the crucial concepts of wing warping and adverse yaw.  In 1903 
they developed a generally sound theory of propeller operation.  By 
1905 they had made over 100 powered flights for durations up to 38 
minutes, but the US War Department refused to believe that flight was 

3.2    An analogy with aeronautics    55   



possible and rejected an invitation to a demonstration.  However, the 
test flights continued as occasions of great drama and apprehension 
- and danger, for Orville Wright had two serious accidents and killed 
an observer in 1908.  Very soon, the test flight was displaced by more 
specialized environments, such as wind tunnels, and the elaboration 
of the theory of aeronautics.

Aeronautics is largely concerned with the flow of fluids over 
surfaces and therefore is a  branch of fluid mechanics, which had 
been comprehensively studied in the 19th century.  The first attempts 
to apply fluid mechanics to aeronautics produced theories which, 
although apparently correct, gave answers which did not agree 
with the results of tests.  An important element, viscosity, had been 
omitted.  Today, aeronautics is (Shevell, 1983)  

“a blend of beautiful theory and empirical fine tuning.”
Aeronautical theory is expressed in the language of mathematical 

physics and includes a wealth of specific technical concepts, such as 
downwash, ground effect, and wake vortex turbulence, and its own 
sub-theories, such as the theory of circulation.  The theory provides 
substantial confidence in the safety and efficiency of aircraft before 
any flight is attempted.  If there are variations in design which 
need to be investigated then this may be done in specially designed 
test environments, not in a full-scale test flight.  The successful 
development of aeronautics has been possible even though fluid 
mechanics itself is far from complete, with basic questions such as 
the nature and cause of turbulence still not wholly answered.

In comparison, AI-ED system design is about where airplane 
design was in 1905.   Perhaps a thousand ‘test flights’ have been made 
and most have crashed.  Empirical studies have been carried out, 
although these are likely to have missed the crucial aspects.  Special 
test environments are beginning to be built, as we will see.  The US 
Department of Defence is beginning to believe that AI-ED systems 
can solve some of their training problems.  Unfortunately, there is 
unlikely to be a manuscript hidden in the archives which lays out 
the basic theoretical principles for AI-ED system design (although 

56    Computational Mathetics



some people are looking).  In fact, there is no ready-to-hand theory 
which is likely to be adaptable for our purposes, as fluid mechanics 
was for aeronautics. Our argument will be that AI is the best source 
for such a theory, although we can be sure that we will have more 
work to do than just identify missing components, such as viscosity.  
It may be that AI-ED system design is so fundamentally different 
from airplane design that no corresponding theory is attainable: we 
may see.

3.3 An analogy with computational linguistics

The ability to learn has some similarities with the ability to use 
language:

They are both universal abilities in that they are developed by all • 
normal individuals in all cultures.
There are believed to be universal principles which hold for both • 
abilities.  The observation in 1786 by Sir William Jones, Chief 
Justice in Bengal, that modern languages “have sprung from some 
common source which, perhaps, no longer exists” was considered 
deeply insightful and is sometimes regarded as marking the birth 
of ‘linguistics’.  The search for linguistic universals, that is, 
properties of language which are necessary and innate, is very 
much part of modern linguistics.  The assumption of ‘learning 
universals’ seems to have gone unremarked.
Although all individuals develop both abilities they may be • 
improved by a deliberate educational effort.  In English-speaking 
countries ‘English language’ is a core of the primary and secondary 
curriculum, and courses such as ‘study skills’ are sometimes 
offered although more often teaching about learning is distributed 
opportunistically around other courses.
Both abilities can be applied individually or within groups.  It is • 
arguable that the purpose of both abilities is to enable individuals 
to participate and contribute in society.  At least, it is clear that 
both cognitive and social aspects have to be considered.

3.2    An analogy with aeronautics    57   



Both abilities can be possessed (to some extent) by agents other • 
than humans, for example, chimps and computers.
Linguistics, the scientific study of language, has been a 

recognised discipline for two centuries or more, with several 
established sub-disciplines:  anthropological linguistics, applied 
linguistics, biological linguistics, computational linguistics, 
educational linguistics, ethnolinguistics, mathematical linguistics, 
neurolinguistics, philosophical linguistics, psycholinguistics, 
sociolinguistics, statistical linguistics, and theolinguistics (Crystal, 
1987).  Computational linguistics provides the theoretical and 
technical underpinning for the development of computer-based 
language systems, such as those for machine translation, natural 
language front-ends, and so on.  The achievements of computational 
linguistics are a major reason why there are now many hundreds 
of computer-based language systems in routine use.  A modern 
textbook on computational linguistics, such as Gazdar and Mellish, 
(1989), says very little about particular applications.  It also says 
little about related sub-disciplines such as psycholinguistics and 
sociolinguistics.  As Gazdar and Mellish say in their preface: 

“The book is formally oriented and technical in character, and 
organized, for the most part, around formal techniques.  The 
perspective adopted is that of computer science, not cognitive science.  
We have no claims to make about the way the human mind processes 
natural language ... This is a book about natural language processing 
techniques, not about their application.”  

The earliest books on computational linguistics make strange 
reading today.  For example, almost half of Hays (1967) deals with 
elementary data structures and transient hardware, the remainder 
discussing miscellaneous applications, such as concordances.  Gazdar 
and Mellish, in what is still only an ‘introduction to computational 
linguistics’, can write over 500 pages of technical material.  In 
comparison, AI-ED system design is about where the design of 
natural language systems was in 1970.  As remarked above, current 
AI-ED books are primarily non-technical descriptions of various 
applications.

58    Computational Mathetics



3.4	 The	definition	of	computational	mathetics

The scientific study of learning, in so far as it exists today, is 
distributed around psychology, education, sociology and 

artificial intelligence.  It does not form a coherent, integrated field 
of study and does not contribute reliably to the design of computer-
based learning systems.  While not wishing to suggest that such a 
discipline be created, we can daydream about how the design of AI-
ED systems would be different if it were.

According to the Shorter Oxford Dictionary, the word ‘mathetic’ 
is an adjective meaning “pertaining to learning”, from the Greek 
‘manthanein’, “to learn.”  We may coin the noun ‘mathetics’ to 
mean “the study of matters pertaining to learning”, in analogy 
with linguistics, physics, aesthetics, and so on.  Then the field of 
‘computational mathetics’ would be “the study of matters pertaining 
to learning, and how it may be promoted, using the techniques, 
concepts and methodologies of computer science and artificial 
intelligence”, in analogy with the definition of computational 
linguistics (Gazdar and Mellish, 1989).  (Papert (1993) also finds 
the need to invent the word ‘mathetics’ for “a course on the art of 
learning.”  In fact, the coinage is not new.  There was, I understand, 
a short-lived Journal of Mathetics in the 1960s.)

Computational mathetics would be, like computational 
linguistics, technically and theoretically based and oriented towards, 
but independent of, practical applications.  In particular, it would be 
oriented towards the eventual design of computer-based systems to 
promote human learning.  

As a field, it would be related to but clearly distinct from 
psychomathetics, sociomathetics, ethnomathetics, educational 
mathetics, neuromathetics, and so forth.  Most of what is written 
today about AI-ED systems could be considered to belong in those 
co-fields, not within computational mathetics.  Those co-fields must 
continue to develop for they are complementary to, not in competition 
with, the field of computational mathetics.

3.4    The definition of computational mathetics    59   



Computational mathetics would be explicitly concerned with 
‘learning’, not ‘education’ in its broad sense.  This is a realistic view 
of what AI-ED systems aim to do, despite the ‘education’ in the 
title.  The business of education involves much more than just that 
of learning, for example, the range of administrative and pastoral 
activities.  These are outside the scope of AI-ED systems and therefore 
of computational mathetics.  Computational mathetics would not be 
concerned solely with human learning and therefore would not be 
wholly within psychology.  It would also not be concerned solely 
with the design of computer programs to learn (or machine learning) 
but with the interaction between two or more agents, one or more of 
whom it is intended should learn.  Computational mathetics would 
differ from other fields in scope but, more importantly, in approach.

The term ‘computational mathetics’ was first used as a private 
joke to ward off gullible colleagues who tended to mock anything 
to do with AI and education and especially both.  The term also 
comes in useful to avoid those conversations that tend to occur in 
public houses whenever AI or education is mentioned.  At first, the 
term sounds impressively pretentious.  With use, however, it seems 
perfectly natural and what it connotes entirely worthwhile and 
sensible.  

3.5 The approach of computational mathetics

To justify a neologism such as ‘computational mathetics’ it seems 
necessary to indicate what might be added to what we already 

have.  Let us therefore consider the current style of theorising in 
AI-ED research and development.  Here are four illustrative sets of 
principles which their authors propose for AI-ED system design (the 
first two are repeated from chapter 2):

Represent the student as a production system.• 
Communicate the goal structure underlying the problem-solving.• 
Provide instruction in the problem-solving context.• 
Promote an abstract understanding of the problem-solving • 

60    Computational Mathetics



knowledge.
Minimize working memory load.• 
Provide immediate feedback on errors.• 
Adjust the grain size of instruction with learning.• 
Facilitate successive approximations to the target skill.• 
 (Anderson, Boyle, Farrell and Reiser, 1989)

Participate with users in multidisciplinary design teams.• 
Adopt a global view of the context in which a computer system • 
will be used.
Be committed to providing cost-effective solutions to real • 
problems.
Aim to facilitate conversations between people.• 
Realise that transparency and ease of use is a relation between • 
an artifact and a community of practice.
Relate schema models and AI-ED systems to the everyday • 
practice by which they are given meaning and modified.
View the group as a psychological unit.• 
 (Clancey, 1993)

Begin instruction by activating relevant previous knowledge.• 
Mark the beginning of a new lesson segment.• 
Tell the student the nature of the lesson segment.• 
Label knowledge items.• 
Mark reference-preserving shifts of expression.• 

 (Leinhardt and Ohlsson, 1990)
Design and use computer-based tools pedagogically, that is, as • 
cognitive instructional tools for mindful teachers and learners in 
a culture of problem-solving.
Extend and empower the minds of intentional learners.• 
Provide learners with some guidance according to the ‘principle • 
of minimal help.’
Have students construct and externalize their mental models.• 
Provide students with intelligible and effective representational • 
tools of thought and of communication.
Promote the use of comprehension-related strategies.• 

3.5    The approach of computational mathetics    61   



Encourage reflective and self-directed learning.• 
Extend the use of computer-based instructional tools into a • 
supportive classroom culture of collaborative learning.

 (Reusser, 1993)
These principles are a different kind of theoretical entity to those 
encountered in aeronautics or computational linguistics books.  But 
regardless of that, we may ask: Where do they come from?  In what 
ways were they derived?  How do they relate to one another?  Are 
they sound?  Are they useful?

The Anderson principles are supposed to be corollaries of ACT*, 
a psychological theory of cognition.  The principles are derived from 
the theory by a process of discussion (in English).  It is not possible 
to prove, in a mathematical sense, that the principles do follow from 
the theory, that they are all the principles that follow, that they are 
the most important principles, or that contrary principles cannot be 
derived.  The Clancey and Reusser principles follow from an even 
more tenuous argument from what is more a philosophy than a 
theory about learning.  The Leinhardt and Ohlsson principles were 
specified after empirical observations of classroom teachers.  

Taken together, they provide 28 principles for AI-ED system 
design.  Or are some of the principles the same or even contradictory?  
Is “Encourage reflective and self-directed learning” the same 
as “Provide immediate feedback on errors” or do they contradict 
one another - if the latter, how, precisely?  A scientific field cannot 
advance through the ad-hoc accumulation of unrelated principles.  
It seems encumbent on anyone proposing a new principle to say 
clearly how that principle supplements or overrides previously-held 
principles.

The soundness of the principles is hard to determine.  For one thing, 
the principles are stated as recommendations not as propositions, 
that is, a principle such as “Encourage reflective and self-directed 
learning” is not of a form which can be said to be true or false.  We 
must presumably read the principles as “If you <recommendation> 
then <result, for example, students will learn more>.”  Therefore, 

62    Computational Mathetics



one way of evaluating the soundness of a principle is to implement 
a system according to the recommendation and see if the promised 
result ensues.  According to Ohlsson (1991), Anderson, Conrad and 
Corbett (1989) “empirically validates” the Anderson principles, 
although Anderson, Boyle, Corbett and Lewis (1990) comment that 
“we do not really know what features of our tutors produced these 
positive outcomes nor do we know how optimal our tutors are.”  (As 
far as I am aware, no similar empirical validation has been claimed 
for any of the other principles.).

  This kind of validation is problematic for several reasons:
The ‘result’ is never explicitly stated, as we see.  A scientific • 
theory should make precise predictions: it should specify which 
students will learn what, how, and when.
The ‘recommendation’ is not stated sufficiently clearly that • 
a system implementation follows directly from it.  Consider 
“Encourage reflective and self-directed learning.”  The early 
papers on cognitive apprenticeship referred to AlgebraLand as an 
exemplar system designed to promote reflection.  However, the 
limited empirical studies that were carried out indicated that the 
desired reflection hardly ever occurred (Foss, 1987), as discussed 
further in chapter 6.
It is not possible to implement a system to accord with only • 
a single recommendation - inevitably, a whole set of other 
recommendations has to be adopted as well.  Therefore, even if 
the promised result materialises it cannot be reliably attributed to 
a particular recommendation.
There are ethical difficulties in carrying out experiments with • 
students in realistic situations (not mitigated by the fortunate fact 
that most such experiments yield a ‘no significant difference’ 
outcome).
It may be inefficient and costly to implement a complete AI-ED • 
system to investigate a single principle.
Surely, nothing could be as indisputable as a successful empirical 

evaluation.  Bhuiyan (1992) reports that users of his system (PETAL) 

3.5    The approach of computational mathetics    63   



scored 60% correct, compared to 0% for the control group (maybe 
we could say that they performed infinitely better).  His project is 
exemplary in following the standard AI-ED research paradigm: 
carry out empirical studies of real learners; develop a theory to 
explain what causes good and bad learning; develop a system to 
promote good learning; carry out a comparative study to show that 
students do indeed learn better using the system, and hence validate 
the theory.  

Perhaps the results can be explained, almost regardless of the 
theory developed.  Imagine that (1) a learning task is of the ‘ah I see’ 
variety, where performance improves in a quantum step from 0% 
to 100%; (2) a system with a specially designed interface enables 
students to ‘see’ the concept in time t1, which is less than the time 
t2 it takes under normal conditions; (3) the post test is carried out at 
a time t, between t1 and t2.  Then the system users will score 100% 
and the non-users 0%.  Maybe the PETAL experiment meets these 
conditions (in my experience, the concept of recursion, the domain of 
PETAL, comes close to meeting the first condition).  It is important 
to reduce learning time if possible but it is not clear that any deep 
cognitive theory is validated by the experimental results.  Of course, 
Bhuiyan did not set out to design a misleading experiment, but it is 
possible to see how impressive empirical results might be contrived, 
if that were the only criterion (which does not say much for the 
research methodology).

The AI-ED field is necessarily multi-disciplinary, involving 
aspects of computer science, education, psychology, and, to a lesser 
extent, other fields.  It is not my purpose to imply that some disciplines 
are misguided in their methodologies or somehow incompetent in 
not providing what is needed.  Nor is it the aim to argue that AI-
ED should become ‘computational mathetics’, for want of a term.  
According to Ohlsson (1991), 

“The educational literature contains few if any ideas about learning.  
The coarse level of analysis employed in most other writings on 
education only suffices for the formulation of principles which are so 
vague as to be useless.” 

64    Computational Mathetics



As a result, he argues that AI-ED should simply become a part of 
cognitive psychology.  Instead, I see AI-ED as a field where what 
I have called psychomathetics, sociomathetics, and so on must all 
continue to contribute but where the area of computational mathetics 
has been relatively neglected and may soon be able to play a 
stronger role.  Established disciplines have relatively agreed-upon 
methodologies which differ from one another as well as from that of 
computational mathetics.

Computational mathetics would not just aim to make the vague 
theories and principles of other disciplines more precise, rigorous, 
formal and computationally useful.  Its primary aim is to serve 
AI-ED system design, not to formalise general theories for other 
disciplines.  For example, Lepper, Woolverton, Mumme and Gurtner 
(1993) found that human tutors tended to make indirect responses to 
student errors (such as “So, you think it’s 126?”) but it could well 
be that such responses would be inappropriate for AI-ED systems 
and therefore of little significance in computational mathetics.  
Computational mathetics should contribute its own techniques, 
concepts and methodologies to the field of AI-ED.

It would be idealistic but nonetheless desirable for computational 
mathetics to aim to be neutral with respect to the controversies of its 
associated fields such as psychomathetics and educational mathetics.  
In analogy with computational linguistics, computational mathetics 
would aim to make no claims about the way the human mind learns 
(or at least make it clear where it is making such claims).  Maybe an 
appropriately defined formal language in computational mathetics 
could be used to express any relevant theory of psychomathetics or 
any other -mathetics.  

Computational mathetics would also take no position with 
respect to broad educational issues such as: What is the purpose of 
education?  How can educational innovation be promoted?  Again, 
the aim is not to imply that such questions are unimportant, but that 
they may be usefully separated from more technical, computational 
questions.

3.5    The approach of computational mathetics    65   



3.6 The language of computational mathetics

It is time to begin making choices in order to be more specific 
about the nature of computational mathetics.  The basic notation 

which we will use is that of agent-oriented programming (Shoham, 
1993).  Rather than begin with a formal definition of its syntax and 
semantics, we will first give a few simple illustrative expressions in 
the notation in order to provide an intuitive feel for it and then refine 
the notation in later chapters.

The expression
 Believes(John,Composer(Fidelio,Beethoven))

might be intended to indicate that John has been ascribed the belief 
that the composer of Fidelio was Beethoven.  That is what it might 
indicate to us but, of course, it will hardly indicate this to a computer 
program which may not have a mapping between, say, the symbol 
Composer and the concept of ‘composer’ and even if it did it would 
not have such a rich appreciation of what the concept means.  The 
general form of expression of which this is an instance is:
 Modality(agent,proposition)

where the three parts need some preliminary explanation.  
An agent is “an entity whose state is viewed as consisting of 

mental components such as beliefs, capabilities, choices, and 
commitments” (Shoham, 1993).  Agenthood is in the eye or mind 
of an observer who views an entity.  The observer finds it useful to 
ascribe beliefs and so on to the entity.  Such an ascription enables the 
observer to reason about the entity, for example, to make predictions 
about how the entity will behave.  Ascribing a belief to an entity is 
not making any claim about what that entity physically possesses, 
in some sense.  Making such ascriptions is a common explicatory 
device.  For example, a recent documentary on the nature of 
lightning commented that “the lightning does not know the ground 
is there at all.”  Clearly, there is no implication that an entity such 
as lightning is physically capable of  possessing anything which we 
could reasonably call knowledge.

66    Computational Mathetics



For our purposes, the two main classes of entity are students 
and programs.  Just as we can ascribe beliefs to students, so we can 
ascribe them to programs:
 Believes(program,Composer(Fidelio,Mozart))

It might seem odd to ascribe beliefs to a designed entity such as a 
program: we imagine that we could just inspect the design and see 
directly what it believes, that is, what the designer has designed it 
to believe.  However, programs are complex and the contents of its 
‘mental components’ change while the program is running.  We will 
find it useful to make ascriptions such as:
 Believes(program,
  Believes(John,Composer(Fidelio,Mozart)))

The term ‘agent’ has become widely used in computer science 
and AI, without a universally accepted definition.  Shoham’s 
definition above allows the term to refer to entities which are human 
or software, and that is the sense we have used previously, as an 
abstraction of the classes of intelligent entity which includes both 
humans and programs.  According to Wooldridge and Jennings 
(1994a), in computer science, the term ‘agent’ is generally restricted 
to computer systems which possess the properties of: 

autonomy - being able to operate without the direct intervention • 
of humans or others, 
social ability - being able to interact with other agents, • 
reactivity - being able to perceive and respond to their • 
environment, and 
pro-activeness - being able to exhibit goal-directed behaviour by • 
taking the initiative.  

We can accept this definition, as the properties are all ones which 
we would wish both programs and students to possess.  In AI, the 
term ‘agent’ generally means (as Shoham’s definition indicates) that 
an entity is conceptualised in ‘human-oriented’ mentalistic notions 
such as belief, knowledge, obligation, desire, and so on.  From an 
AI perspective, the consideration of such notions seems necessary 
to provide the properties listed above, although this is debatable.  

3.6    The language of computational mathetics    67   



As far as AI-ED is concerned, the term ‘agent’ is convenient as it 
does not pre-empt discussion of the possible roles and status of the 
participants (humans and programs) involved.

A proposition is, for the moment, simply a statement to which 
one may sensibly respond “true” or “false”.  We may not know 
which response we should give, but we know that one or the other 
is appropriate.  “I am not married” is a proposition, but “Will you 
marry me?” is not.  We will use predicate logic with modal operators 
to express propositions (chapter 4).

The modality denotes the kind of ‘mental component’ which 
is ascribed to the agent with respect to the proposition.  Typical 
modalities are Believes, Knows, Accepts, Is-aware-of, Wants, 
Intends, and Is-committed-to.  For example, the expression
 Wants(program,
  Believes(John,Composer(Fidelio,Mozart)))

might denote that we have ascribed to the program the ‘want’ or goal 
that John believes that the composer of Fidelio was Mozart.  As we 
can anticipate, the precise interpretation of such modalities will be 
difficult.

We will also need performatives, that is, operators which specify 
some kind of communication between agents or some kind of 
updating of what has been ascribed to agents.  For example,
 Tell(program,John,Composer(Fidelio,Mozart))

might initiate some statement from the program to John, with some 
consequent change of beliefs ascribed to him.  This will be discussed 
further in section 4.4 and afterwards.

The agent-oriented notation seems a possible basis for developing 
computational mathetics as it promises precision yet breadth.  The 
idea of an agent as an autonomous, rational entity enables us to view 
both programs and students as communicating individuals, each 
with their own goals, with some degree of independence, and with 
some ability to reason for themselves and about others.  Moreover, 
it may be possible to capitalise on the work done on multi-agent 
systems and related fields in artificial intelligence.  Although the 

68    Computational Mathetics



simple examples above illustrate a ‘knowledge transmission’ view 
of AI-ED, there is nothing in agent-oriented programming which 
prohibits other views, and we will seek to extend the notation to 
encompass those views in due course.

At this stage, we have only an informally-illustrated notation.  
We have no semantics to go with it.  However, there is no need to 
expect or insist that we later define a complete formal semantics.  
This would be futile, for the ‘real meaning’ of any notation cannot 
be fully captured in culture-free symbolic representations, however 
complex.  However, we can hope for sufficient agreement on our 
interpretations and for sufficient content in our representations that 
our analyses might be informative and useful.

By opting for an agent-oriented notation, we imply that the 
appropriate level for theorising about AI-ED is at what Newell 
(1982) called the ‘knowledge level’ rather than at the ‘symbol level’ 
or ‘program level’ or some level concerned with physical, mental 
structures.  The knowledge level is where we ascribe knowledge, 
goals and actions to an agent.  The knowledge level is said to lie 
“immediately above” the symbol level, where representations are 
specified.  However, it is not possible to say anything very precise 
about the knowledge level without adopting some symbolic notation 
to say it.  The only real distinction between the knowledge level and 
the symbol level lies in the kinds of symbols used.  For our purposes, 
the point of operating at the knowledge level is to suggest that we 
are concerned with knowledge level entities which are symbol-
independent, although we must use some symbols to say anything 
about them.  Therefore, we have no particular commitment to the 
symbols actually used.

3.7 The aims of computational mathetics

The main aim of computational mathetics is to enable theories 
of learning, instruction and anything else of relevance to be 

expressed in a formal language so that designs for AI-ED systems 

3.6    The language of computational mathetics    69   



to meet specified objectives can be derived analytically.  This aim is 
unattainable now and possibly unattainable in principle.  However, 
we can consider how aspects of the main aim might be achieved.

In any endeavour, the role of formality passes through up to six 
stages: 
1. To begin with, practitioners deny that it is necessary, possible or 

appropriate to try to express their activities in any kind of artificial, 
precisely-defined language.  The content of their activities is just 
too complex to be adequately described at all without the full 
subtlety of natural language.  

2. Eventually, perhaps, some recurring patterns in their activities 
will be recognised and in the interests of brevity some symbol 
will begin to be used to denote that pattern.  In this second stage, 
there will be much confusion and argument over which patterns 
to symbolise and what the symbols ‘mean’.  

3. In due course, some consensus may emerge and all practitioners 
will become obliged to use the agreed-upon symbols.  So, for 
example, in chemistry HCl denotes hydrochloric acid and in 
music ♪ denotes a quaver.  During this stage, the symbols are just 
abbreviations for concepts which could be written out in full, and 
in fact to begin with any use of the symbols will be accompanied 
by a translation into the full version, for example, to explain that  
 Believes(John,Composer(Fidelio,Beethoven))

means that “John  has been ascribed the belief that the composer 
of Fidelio was Beethoven.”  

4. In the fourth stage, the notation itself becomes a vehicle to work 
with, regardless of the translated ‘meaning’ of the expressions in 
the notation.  So, for example, a chemist will begin to carry out 
symbolic manipulations directly on chemical equations

  2HCl + Na
2
CO

3
 = 2NaCl +H

2
O + CO

2

without pausing to consider the real meaning of the symbolic 
operations.  For the result of a series of operations to be meaningful, 
each individual operation, in general, must be meaningful.  When 
the abstract symbols are particularly powerful (for example, the 

70    Computational Mathetics



ring notation for certain aromatic compounds) they seem to inspire 
the appropriate operations.  It is only in the fourth stage that any 
real benefit begins to come from formalisation.

5. In the fifth stage, it is realised that the operations themselves can be 
formalised, that is, we can agree on a notation for the operations.  
In this case, we can, if we wish, represent the operations within 
a programming language and have a computer program carry out 
the manipulations.  

6. As the operation of a computer program may be rather opaque 
and hence its output considered untrustworthy, we might identify 
a sixth stage (although it is not fundamentally different from the 
fifth) in which the content of the operations and the operations 
themselves are so precisely defined that they could in principle 
and maybe in practice be written down so that we could formally 
derive outcomes and engage in meta-theoretic activities such as 
proving that certain outcomes can or cannot be derived, or how 
efficiently outcomes can be derived.

Not all endeavours can or should pass through all stages.  For 
example, most parts of chemistry have not passed beyond the fourth 
stage - that is, (as far as I know) in most cases the operations have 
not been defined so that programs or ourselves can carry out rigorous 
derivations of results.  

Where among the stages does AI-ED lie?  For some AI-ED 
researchers, it is resolutely at the first stage.  The few who have 
attempted any kind of formalisation have not been able to progress 
beyond the second stage, because there is no agreement on whether, 
what and how to formalise.  The terminology, even without precise 
definitions, is barely established.  There are some efforts, as we 
will describe, which might be considered to be at the fifth stage, as 
they involve the use of computer simulations to make predictions, 
but they by-pass the stages of saying precisely how the simulations 
work.

At the moment, AI-ED systems are created by repeated iterations 
through a loop in which informal theories lead to experimental 

3.7    The aims of computational mathetics    71   



systems which are empirically evaluated (top of Figure 3.1).  With 
the present state of AI-ED theory, the need for empirical evaluations 
seems inescapable.  The potential problems of evaluation-based 
research were discussed in section 3.5.

AI-ED research should aim to eliminate (or at least greatly reduce) 
the need for empirical evaluations, not embrace them within the 
design process.  With aircraft, the maiden flight is a demonstration, 
not an evaluation.  All the essential properties have been theoretically 
determined, reducing the role of empiricism to fine-tuning the theory.  
Moreover, the empirical tests are carried out not in the real world but 
in environments specially designed to test aspects of the theory.  Of 
course, we are a long way from an AI-ED theory from which designs 

72    Computational Mathetics

 

Informal 
theories

 Informal 
principles

Experimental 
  systems

Empirical 
evaluation

many iterations

Informal 
theories

 Informal 
principles

Experimental 
  systems

Empirical 
evaluation

fewer iterations

Semi-formal 
 theories

Evaluate by 
simulation

 Formal 
theories

  Formal 
principles

  Derived 
  systems

Demonstration

empirical fine-tuning

 
 

 
Figure 3.1.  The progression from informal empiricism to

formal demonstration



may be formally derived (bottom of Figure 3.1).  However, there is 
an intermediate strategy (middle of Figure 3.1) which may enable 
us to move in this direction.  Instead of deriving the design of a 
complete AI-ED system by some mathematical analysis, we may 
able to carry out such an analysis on components of a system and/
or derive theoretical outcomes by computer simulation, rather than 
by analysis.

It should hardly be necessary to point out the potential benefits 
of formalisation to any scientific endeavour (which I assume AI-ED 
system design to be) but because it has been neglected heretofore a 
brief list may be worthwhile:

The use of a formal language may help clarify otherwise vague • 
principles.
The use of an agreed formal language can make it easier for • 
researchers to understand and build upon the work of others.
An analytical study of a component of AI-ED systems can lead • 
to precise statements about the power and shortcomings of that 
component and enable comparative studies of various proposed 
implementations of that component.  Thus, formal tools may 
help us manage the complexity of AI-ED systems.
An analysis of proposed systems may eliminate or reduce the • 
need for costly experimental implementations.
Knowing the theoretical properties of proposed systems, which • 
may predict their likely run-times, makes it easier to determine 
where practical compromises should be made.
An appropriate formal language can serve as a high-level • 
specification language and can be directly implemented in logic-
based programming languages, enabling the efficient study of 
prototypes.
It is possible that AI-ED may be able to capitalise upon the large • 
body of formal work already carried out in AI.
Genesereth and Nilsson (1987) comment that “successful 

preparation in mature fields of science and engineering always 
includes a solid grounding in the mathematical apparatus of that 

3.7    The aims of computational mathetics    73   



field.”  Two sceptical responses to this are possible.  First, AI-ED 
(and perhaps AI in general) is not a ‘mature field’ .  Therefore, there 
is no ‘mathematical apparatus’ and it would be premature to try to 
establish one, or perhaps even misguided for in a new field what 
can be formalised first are inevitably the simplest, possibly least 
important, and maybe irrelevant aspects of the field.  

Secondly, AI-ED may not be a field of science or engineering at 
all.  Within AI there has always been a vigorous debate between the 
‘neats’ (the ‘formalists’) and the ‘scruffies’ (the ‘experimentalists’).  
As always seems to be the case, these are not mutually exclusive 
options: the important question is how we combine the virtues of 
both approaches.  AI-ED, because of its dependence on contributions 
from education, psychology and other disciplines, might be claimed 
to be more of a social science than a natural science or engineering.  
Some social scientists will argue that the ontological characteristics 
of humanity are such that the social world is not amenable to the 
kind of allegedly objective and reductive analysis characteristic of 
natural science explanations.  As far as AI-ED is concerned, we can 
say that many perspectives are necessary and welcome: my own 
view is that it is time that the perspective of computational mathetics 
was applied.  Debates about the scope of computational mathetics 
will not, by definition, be resolved by general discussion but by a 
determined effort to widen its boundaries.  

Before embarking on this, some expectations may need to be 
lowered.  The version of computational mathetics which follows 
does not achieve anything near the aims laid out above.  In fact, in 
most cases it is not possible to do much more than indicate those 
areas of formal AI which promise to be useful for computational 
mathetics.  Many of these areas are research fields in their own right 
and it would take a large-scale, coordinated programme to investigate 
in depth their applicability to AI-ED.  But we must be realistic - 
computational linguistics has made progress despite the fact that its 
theoretical concepts are not complete, correct, or cognitively valid, 
and so may computational mathetics.

74    Computational Mathetics



4

Knowledge

As the main aim of designers of AI-ED systems is that students 
come to know something (not necessarily something which 

the designers have completely specified beforehand) and the core 
activity of AI has been knowledge representation, we will begin the 
development of computational mathetics by looking at knowledge 
representation techniques from an AI-ED perspective.  Any standard 
AI textbook (such as Rich and Knight, 1991; Winston, 1992; 
Ginsburg, 1993) provides a more general and complete coverage of 
knowledge representation.  In this chapter the aim is to consider the 
foundations of knowledge representation in so far as they specifically 
affect AI-ED.  We will consider whether the established techniques 
of AI can be extended to encompass different views of the nature of 
knowledge.  In this chapter we are mainly concerned with developing 
notations which can be used to represent knowledge, belief, and so 
on in computational mathetics; the following chapters consider how 
knowledge can be used and acquired.

4.1 Behaviour, belief and knowledge

Imagine that you are driving in the dark and a car approaching flashes 
its lights.  In order to react appropriately to this communicative 

act, you ascribe beliefs and goals to the oncoming driver: he has 
recognised you and is saying “hi”; or he is warning you of some 
hazard (an accident ahead, or a police speed trap, or that your own 
lights are off); or he is encouraging you to go ahead (for example, to 
turn ahead of him) where normally you would not; or he intended to 
signal to turn but hit the wrong switch; and so on.  Depending on the 

4    Knowledge    75   



situation, some of these ascriptions are more plausible than others.  
At all events, you may (or may not) adapt your own behaviour.  
And all this happens literally in a flash - you do not pull over to 
contemplate at length the semiotics of car light flashing.

This is as simple a communicative act as possible but it illustrates 
the essential characteristics of AI-ED system communications.  Both 
(or all) participants are or should be continually ascribing mental 
components to one another and adapting their own behaviour as a 
result.  Usually these ascriptions are not entirely reliable because of 
the shortage of information and time to consider it.  Nonetheless, 
even though unreliable,  the ascriptions can make a crucial difference 
to subsequent behaviour.

We need now to consider the relation between behaviour, belief 
and knowledge.  This is philosophical quicksand but the designers of 
AI-ED systems have no choice but to build upon it.

Imagine now that every night at 10 o’clock I pick up my walking 
stick and my dog bounds up wagging its tail.  We might well say that 
the dog believes we are going for a walk.  Does the dog believe that 
we always go for a walk at 10 o’clock?  If a  dog does not understand 
the concept of ‘10 o’clock’ can it be said to believe something about 
it?  Does it really understand the concept of ‘going for a walk’ 
either?  My dog not being keen on philosophical discussion, we 
cannot resolve this.  

So imagine instead that I tell Mary that “praseodymium is 
ductile” and she says “yes.”  Can we ascribe:
 Believes(Mary,Ductile(praseodymium))

Maybe not, for she may not understand the meaning of “ductile” or 
“praseodymium”.  Perhaps all we can say is that:
 Believes(Mary,”praseodymium is ductile” is true)

assuming that she trusts me to say what is true.  Or perhaps that 
she believes that I say what I believe to be true (although I may be 
mistaken):
 Believes(Mary,Believes(me,
  meaning(”praseodymium is ductile”)))

76    Computational Mathetics



With Mary, we could try to unravel this, but the point is that it can be 
tricky in even the simplest cases to write appropriate ascriptions of 
the form Believes(a,p).  In general, the p should be in the language 
of the person ascribed to, a, not that of the abscriber.

The notation Believes(a,p) means that the belief p has 
been ascribed to the agent a by some observer, not that a believes 
p (although we will often use the latter phrase as a convenient 
abbreviation).  This ascription is the result of a belief of the observer, 
and if the observer is a second agent b communicating with a then 
we might need to specify: 

Believes(b,Believes(a,p)).  
This too is an ascription of some observer.  If this observer is the 
agent a then we could specify this as: 

Believes(a,Believes(b,Believes(a,p))).  
This nesting of beliefs stops when we postulate that an ascription is 
made by some agent who is not a participant in the interaction and 
to whom beliefs do not need to be ascribed.

As we have taken ‘belief’ as the basic epistemic concept we 
cannot define it in terms of other concepts.  All we can say, rather 
circuitously, is that if an agent has a belief p then it is disposed to 
behave as if p were true and that if an agent behaves in a certain 
way an observer is disposed to ascribe the belief p to it.  The use of 
the word ‘disposed’ emphasises that there is no guaranteed mapping 
between belief and behaviour.

There are three senses of the word ‘belief’ in English which we 
do not mean to inherit.  One is its use to imply that the ascriber of a 
belief p to an agent a actually believes that p is false.  For example, if 
someone says “John believes the moon is a star” it might be taken to 
imply that the speaker believes that the moon is not a star.  Secondly, 
‘belief’ is sometimes used in contexts precisely because the belief is 
one for which the agent has or can have no evidence, for example, 
“John believes he is the reincarnation of Mohammed.”  Thirdly, in 
English, we can say someone believes in abstract concepts (“John 
believes in Marxism”) rather than a specific proposition.  It is matter 

4.1    Behaviour, belief and knowledge    77   



of considerable debate whether the former can be reduced to a set of 
the latter.  By Believes(a,p) we just mean that, in our context, it 
helps in understanding and predicting behaviour to ascribe the belief 
p (a proposition) to the agent a. 

The conventional definition of ‘knowledge’ is that it is ‘justified, 
true belief’.  This is disputed philosophically but it will serve our 
purposes.  Obviously, we need to consider what counts as ‘true’ 
and ‘justified’.  Conventionally, again, a proposition is ‘true’ if it 
‘corresponds to the facts’, but again we can worry about what is 
meant by ‘the facts’ and ‘corresponds’.  It seems clear that we would 
not want to specify:
 Knows(John,Composer(Fidelio,Beethoven))

if we, as observer, knew as an incontrovertible fact that Beethoven 
did not compose Fidelio.  The ascription:
 Knows(Mary,Ductile(praseodymium))

seems less clearcut, as we need a precise definition of the 
predicate Ductile.  For most interesting propositions, such as 
Honest(Churchill), the ‘facts’ are difficult to determine.

In the case of AI-ED systems, one of the agents concerned 
(the program) has two kinds of belief: those which it is has been 
explicitly given by its designer and those which it has determined 
‘for itself’ while running, for example, beliefs about the student 
using it.  As the system has no independent means of determining 
whether the former set of beliefs corresponds to the facts, we often 
speak loosely of the system ‘knowing’ those propositions.  The 
system can have no justification for holding those beliefs, other than 
the fact that the designer has specified them.  However, for the latter 
set of beliefs, and all the student’s beliefs, we can require that an 
acceptable justification be given before we agree that a true belief is 
in fact knowledge.  For example, a student may say that she believes 
that all metals are ductile and all her behaviour might accord with 
this belief but unless she can give some convincing justification for 
believing it (for example, that she has noticed that many metals are 
ductile, or she has a theory about the way the electron structure of 

78    Computational Mathetics



metals causes them to be ductile) we might be reluctant to say that 
she knows that all metals are ductile.

This is a complicated issue because it means that for a proposition 
to make the transition from belief to knowledge an agent needs to 
keep or create convincing justifications for that belief.  Human agents 
tend not to retain the original justifications (if any) for their beliefs - 
they tend to (re)construct them when needed.  Maybe it matters only 
that the constructed justifications be convincing, whatever that may 
mean.  At least, it seems that the transition to knowledge requires 
some degree of articulateness about that knowledge.

It might seem that if a student behaved exactly as if she held a 
particular true belief p then, to all intents and purposes, she may be 
said to know p.  However, when some students were asked to use 
a simple simulation to predict the resultant speeds of two colliding 
inelastic balls of variable speed and mass, those students who were 
able to make predictions entirely in accord with the principle of 
conservation of momentum were unable to verbalise anything 
corresponding to that principle.  In such a circumstance, it seems 
unreasonable to say that the students know that principle.

In the case of computer agents which have been designed to 
‘know’ p with the intention that a student user should also come to 
know p there is clearly a problem, for if the computer agent cannot 
articulate any justification for p then the student may be unable to 
construct one.  Even if a justification can be articulated then it must 
be expressed, as discussed above, in terms meaningful to the student.  
For example, in general, it is not sufficient that a program be able 
to apply the principle of conservation of momentum - it needs to 
be able to give some justification or explanation of it in terms of 
concepts believed or understood by the student.  This is the basis for 
the black box - white box distinction which separates performance-
oriented AI systems from AI-ED systems (Brown, Burton and de 
Kleer, 1982).

Newell (1982) defined knowledge to be “whatever can be ascribed 
to an agent, such that its behaviour can be computed according to 

4.1    Behaviour, belief and knowledge    79   



the principle of rationality” where the principle of rationality says 
(circularly) that an agent will carry out a certain action if it has 
knowledge that one of its goals can be achieved by that action.  This 
functional definition is less suitable for human agents than it is for 
computer agents, where the concepts of ‘rationality’ and ‘computed’ 
can be given precise operational definitions.  For students, 
unfortunately, the relation between knowledge and behaviour is 
not so straightforward, not least because the notion of rationality is 
complicated (as discussed in the next chapter).

In the AI and AI-ED community discussions about the nature of 
knowledge are often merged with those about the behaviour resulting 
from the knowledge and the processes by which the knowledge 
is acquired - which we discuss in separate chapters because for 
students, at least, there is no necessary connection between the three.  
At this stage, we have not violated any principles of objectivism, 
constructivism, situationism, or any other -ism.  

For example, we can agree that “knowledge is not a thing or 
set of descriptions .. [but] a capacity to coordinate and sequence 
behaviour” (Clancey, 1995).  Our ps and Believes(a,p)s are 
clearly not knowledge.  We do not even need to claim that they are 
representations of knowledge.  All we need to say is that they are 
representations which agents might find useful in deciding how to 
behave.  The claim that the action made possible by knowledge is 
situated in the sense that it is constrained by an agent’s understanding 
of its place in a social process challenges the claimants to try to 
specify precisely how this understanding constrains action.

The constructivist view that knowledge “cannot simply be 
received by students but must be constructed anew by them” (Self, 
1990), that is, dynamically as they behave, need not be interpreted 
as a radically different philosophy of knowledge.  It is a view of 
knowledge acquisition rather than of knowledge itself, unless it 
is interpreted as a view that no knowledge exists other than at the 
instant it is (re)constructed.  There is no way of showing one way 
or the other whether knowledge exists in some sense before some 

80    Computational Mathetics



event causes it to be constructed, because any ‘knowledge-detecting 
activity’ is an event which may cause the very knowledge one is 
trying to detect to be constructed.  

However, there seem to be some knowledge-acquiring events 
which strain the idea of ‘construction’ as a complex, active process 
in which an agent assembles and synthesises something significant 
on the basis of the social context and, maybe, prior knowledge.  If 
I look out the window and see that it is raining then for all except 
pedantic purposes I know that it is raining, without much constructive 
processing.  If I ask someone looking out of the window then they 
may ‘transmit’ to me the knowledge that it is raining.  If a student 
asks me the atomic number of carbon then, in some circumstances, 
I may reasonably be said to transmit to her the knowledge that it is 
6 without any significant knowledge construction on her part.  This 
is not to say that all, or even much, knowledge can be transmitted in 
this way.  

The constructivist view that there is no knowledge of the world 
independent of what is constructed by us is a separate philosophical 
claim.  Again, it is one which can never be disproved as it is 
always us doing the constructing.  The idea that all knowledge is 
hypothetical and incomplete, although perhaps literally true, does 
not seem very helpful.  I can assert that I know all there is (which 
isn’t much) to know about when buses are supposed to leave my 
village Brookhouse for Lancaster and I can base my actions on this 
knowledge.  I will miss the bus if I worry overmuch about whether 
this knowledge is correct or complete.  

Similarly, in most contexts where the knowledge will be used, it 
seems possible to say that one has correct and complete knowledge 
of, say, the atomic numbers of the chemical elements or of the present 
participle of the French word ‘devoir’.  Perhaps the constructivist 
view is not that knowledge itself is (always) hypothetical but that the 
processes by which it is acquired are hypothetical, that is, depend 
upon the development of hypotheses, but that is a different claim.

4.1    Behaviour, belief and knowledge    81   



4.2 Propositions and logic

The object of a belief or other mental construct is a proposition 
which is represented in some language-independent, mind-

independent, abstract, symbolic notation, or logic.  The word ‘logic’ 
is not meant to suggest that what is represented is infallibly correct 
but that the notation and the operations which can be carried out on 
it are precisely defined.  Most of our notations will be variations 
and extensions of predicate logic, the lingua franca of AI, which we 
therefore give a brief summary of.

A sentence in predicate logic, such as
 Composer(Fidelio,Mozart) 

is composed of different kinds of symbol: constants, variables, and 
operators, plus punctuation symbols.  

A constant may be of three kinds: 
an • object constant, such as Fidelio and Mozart, which is used 
to name a specific element in the universe of discourse;
a • relation constant, such as Composer, which is used to name a 
predicate on the universe of discourse, that is, a relation which 
maps a specified number of elements or terms onto true or false; 
a • function constant, which is used to name a function on 
members of the universe of discourse, such as father in the 
sentence Carpenter(father(Jesus)).
A variable is used to express properties of objects without 

naming the objects.  There are two kinds of variable, those which are 
universally quantified and those which are existentially quantified.  
The former is illustrated by the sentence Ɐx Red(x), which might 
be intended to mean that every object in the universe of discourse 
is red.  The latter is illustrated by the sentence Ǝx Red(x), which 
might be intended to mean that there is at least one object in the 
universe of discourse which is red.

An operator allows us to form more complex sentences from 
simpler ones.  For example, in
 Composer(Fidelio,Mozart) and Austrian(Mozart)

82    Computational Mathetics



which might be intended to mean that the composer of Fidelio 
was Mozart and that Mozart was Austrian, and is an operator.  The 
standard operators of predicate logic, that is, and, or, → (which may 
be read as ‘implies’), ↔ (which may be read as ‘is equivalent to’), and 
not, are defined by specifying how the truth value of the complex 
sentence depends on the truth values of its components.  If we use S 
and T to denote two sentences in predicate logic then 
 S and T is true if and only if S and T are both true; 
 S or T is true if and only if at least one of S and T is true; 
 S → T is true unless S is true and T is false; 
 S ↔ T is true if and only if S → T and T → S (which means
   that S  and T are both true or both false); 
 not S is true if and only if S is false.  
We can use operators in sentences involving quantifiers, for 
example,
 Ɐx Toadstool(x) → Poisonous(x)

which might be intended to mean that ‘for all x x being a toadstool 
implies that x is poisonous’ or ‘if x is a toadstool then x is poisonous’ 
or ‘all toadstools are poisonous’.  (We must not get hung up on the 
precise meanings of the English words ‘implies’, ‘if’, ‘then’, and 
indeed ‘and’, ‘or’ and ‘not’.  They are irrelevant to the operators’ 
meanings, which are fully defined by the relevant truth values.)

A mathematical or formal logic text would now give a precise 
syntax defining how all these symbols may be combined to form 
acceptable sentences in predicate logic.  We will rely on intuition in 
this respect, and only comment on a few points where intuition may 
fail us.

What we consider to be the objects, relations and functions in 
our universe of discourse is up to us and not part of the syntax of 
the logic.  An object constant does not have to be a simple, tangible, 
individual thing.  For example, in Atomic-number(carbon,6) 
the constant carbon does not refer to an individual object but to a 
concept or class of objects.  As we write sentences in predicate logic 
using even more unusual kinds of object and (in due course) make 

4.2    Propositions and logic    83   



inferences from them, we need to be careful that undesired or even 
contradictory conclusions are not reached.

We should note that variables in predicate logic stand for 
anonymous objects but not anonymous relations or functions.  So, 
for example, we cannot write Ɐx x(Fred), which might be intended 
to mean that all the unary relations in the universe of discourse apply 
to Fred.  Also, relations can only be applied to terms, that is, objects, 
variables, or functions of terms.  So, for example, one cannot apply 
a relation to another relation, as in Virtuous(Honest), which might 
be intended to mean that the property of being honest is virtuous, or 
to a sentence, as in
 Simple(Composer(Fidelio,Mozart))

which might be intended to mean that the sentence 
Composer(Fidelio,Mozart) is simple.  Some of these restrictions 
will be relaxed in some of the ‘nonstandard logics’ introduced later.

Some of the language sketched above is redundant.  For example,  
from the definitions, 
 Ɐx Red(x)  
and not Ǝx not Red(x) 
are equivalent.  Therefore, we can make do with only one quantifier 
(and unless otherwise indicated our variables will be universally 
quantified).  Similarly, 
 Ɐx Toadstool(x) → Poisonous(x)

is equivalent to
 Ɐx  not Toadstool(x) or Poisonous(x)

Therefore it is usual to convert sentences into a standard form, such 
as conjunctive normal form (that is, as a conjunction of disjunctions 
of (negations of) expressions of the form P(t1,t2, ..)), before any 
computational operation is carried out.  There is a standard algorithm 
for carrying out this conversion (Genesereth and Nilsson, 1987).

In order to determine the truth or otherwise of a sentence it is 
necessary to give an interpretation to the constants in the sentence, 
for example, to interpret Mozart as a reference to a particular person, 
Wolfgang Amadeus Mozart, who lived from 1756 to 1791.  With this 

84    Computational Mathetics



and the other obvious interpretations, Composer(Fidelio,Mozart) 
is false.  In our examples so far, the intended interpretations have 
been obvious, but this will not always be the case.  If a sentence is 
true regardless of the interpretation of the constants in it, then it is 
called a theorem.  For example, 
  Composer(Fidelio,Mozart) or 
  not Composer(Fidelio,Mozart)

is a theorem.  The sentence Composer(Fidelio,Beethoven) is true, 
assuming the obvious interpretation, but is not a theorem.  

Most of the putative theorems which we shall be interested in 
will be of the form:
 S1 and S2 and S3 and ... → T

where S1, S2, S3, ... are premises (sentences assumed to be true) 
and T is a possible conclusion.  This is sometimes written as
 S1, S2, S3, ... → T

In the next chapter, we will consider ways in which such sentences 
may be proved to be theorems (or not).

 Because the premises will, in general, contain universally 
quantified variables, theorem-proving will involve a process of 
substitution which should be distinguished from that of interpretation.  
A substitution involves the replacement of a variable by a term.  A 
substitution and then interpretation which makes a sentence true 
is said to satisfy that sentence.  A sentence is satisfiable if there is 
some substitution and interpretation that satisfies it; otherwise, it 
is unsatisfiable.  If a sentence is satisfied by all substitutions and 
interpretations then it is said to be valid or a theorem.  

If a variable is universally quantified then we should be able 
to replace the variable by any term at all and the sentence, if it is a 
theorem, will be true.  Conversely, if we can find one substitution for 
which the sentence is false, then it is not a theorem.  This would seem 
to imply the need for a systematic search of all possible substitutions, 
which promises problems, as there are, in general, an infinite number 
of terms (from the recursive definition allowing terms to be functions 
of terms).  We will return to this in the next chapter.

4.2    Propositions and logic    85   



The above has outlined the syntax of predicate logic.  It is possible 
to give a formal definition of the semantics of predicate logic but we 
will use an informal sentential semantics, whereby what is true is 
just what is defined to be true as a premise or can be shown to be true 
by applying rules of inference (to be defined later).

At this point, it needs to be repeated that this brief review of 
predicate logic is not meant to imply that the goal of computational 
mathetics is simply to adopt the logicist ambition that all knowledge 
in AI be represented in a completely use-independent way in 
predicate logic.  McDermott (1987), Birnbaum (1991b) and others 
have criticised logicism in AI.  Computational mathetics should 
welcome whatever notations and languages turn out to be useful, but 
as predicate logic has been the starting point for almost all formal 
work in AI we can anticipate that it will be a basis for computational 
mathetics.  As we will see, we will adopt notations which transcend 
standard predicate logic whenever convenient.

4.3 Modal representations

Predicate logic may be suitable for a single agent to reason with its 
knowledge (as in AI generally) but in AI-ED we need an agent 

to be able to reason about its and other agents’ knowledge and other 
ascriptions.

The Believes(a,S)notation does not conform to predicate logic 
syntax because we have a sentence S within the scope of what looks 
like a relation constant.  Believes is in fact not a relation constant 
but a modal operator, that is, an operator that takes sentential terms.  
In English, the following constructions all seem to require the use 
of modal operators: “It is possible that ...”, “It is necessary that ...”, 
“I am sure that ...”, “I doubt that ...”, “I know that ...”, “I accept that 
...”, “I desire that ...”, “I hope that ...”, “I fear that ...”, “I am happy 
that ...”, and so on.  

The syntax of a modal logic, with a modal operator M, can be 
defined straightforwardly by saying that a sentence is: 

86    Computational Mathetics



a predicate logic sentence.• 
a sentence constructed from modal logic sentences using the • 
logical operators and, or, →, ↔, not, and so on.
a quantified sentence  • Ɐx S or Ǝx S where S is a sentence.
a modal sentence • M(S), possibly with non-sentential terms as 
well, where S is a sentence.  

Henceforth, for brevity, we will use B for Believes, K for Knows, c 
for the computer system or program, s for an arbitrary student, and 
a for any agent (human or computer).

This simple syntax does, however, mask a number of difficult 
technical and philosophical issues which indicate that modal logics 
must have very different properties to those of ordinary predicate 
logic.  As computational mathetics is concerned with the development 
of belief and knowledge it can hardly ignore such issues, although 
in the interests of practicality it may well be necessary to make 
compromises in defined ways.  Among the many issues are the 
following.

Modal logics of belief and knowledge are referentially opaque, 
that is, two equivalent terms cannot be interchanged.  In predicate 
logic, if it is known that two terms are equal then either may be 
replaced by the other in any context.  For example, if we have the 
premises:
  aspirin = acetylsalicylic acid
 Medicine(aspirin)

then it follows that 
  Medicine(acetylsalicylic acid)

But in a modal logic,  from 
  aspirin = acetylsalicylic acid
 B(s,Medicine(aspirin))

it does not follow that 
  B(s,Medicine(acetylsalicylic acid))

because, of course, the student may not know that aspirin is the same 
thing as acetylsalicylic acid.

In predicate logic the truth value of a  complex sentence depends 
only on the truth values of its component sentences.  Therefore, we 

4.3    Modal representations    87   



can replace any component sentence by one with the same truth 
value.  Clearly, one cannot do this in a modal logic.  For example, if 
we have two theorems T1 and T2 and B(a,T1) then we cannot infer 
B(a,T2).

We need to be particularly careful with the use of quantifiers in 
modal logics.  The syntax allows us to write both
  K(s, Ǝx Composer(Fidelio,x))

and
  Ǝx K(s, Composer(Fidelio,x))

Do these two sentences capture useful differences?  Perhaps the first 
means that the student knows that someone composed Fidelio (but 
not necessarily who) and the second that there is someone (but we 
don’t who) and the student knows of that person that he or she wrote 
Fidelio.  Philosophers have discussed this as the de dicto and de re 
distinction.  If this distinction is important to us we cannot move the 
quantifiers inside and outside the scope of modal operators at will.

Similarly, modal operators do not necessarily commute with the 
logical operators.  For example, 
 B(s,not Composer(Fidelio,Beethoven))

is clearly not the same as 
 not B(s,Composer(Fidelio,Beethoven))

It is not so clear whether or not
   B(s,Composer(Fidelio,Beethoven) or 
    Composer(Fidelio,Mozart))

is equivalent to
   B(s,Composer(Fidelio,Beethoven)) or 
   B(s,Composer(Fidelio,Mozart))

Inference with modal logics is not straightforward.  For one thing, 
modal logics are not necessarily consequentially closed, that is, 
if S1, S2, S3, ... → T

then it is not necessarily the case that 
 M(S1), M(S2), M(S3), ... → M(T)

For example, a student may not believe everything that follows from 
what she believes.  A modal logic which is consequentially closed is 
said to be logically omniscient.

88    Computational Mathetics



Also, in predicate logic a set of premises has to be consistent 
otherwise anything follows, whereas in a modal logic of belief we 
can allow a set of beliefs to be inconsistent.  As the logic may not be 
consequentially closed, this is not necessarily a problem.  However, 
we might expect a set of beliefs to have some degree of coherence.  
For example, we might say that an agent cannot believe a proposition 
and that it doesn’t believe it, and therefore the sentence
  B(a,(p and not B(a,p)) 

would somehow be disallowed.
The syntax allows sentences to be nested to any depth and an 

obvious extension would allow different modal operators and agents 
to be used, so allowing sentences such as
 B(c,Accepts(s,K(c,B(s,T))))

that is, the computer system c is ascribed the belief that the student 
s accepts that the computer knows that she believes T.  We can be 
sceptical that we will be able to specify what kinds of inference we 
would like to make from such sentences and that we will need such 
sentences at all.  But for any child who understands the Hansel and 
Gretel story, at the point when the trail is to be laid, we seem to need 
to make ascriptions equivalent to:
  B(child,Intends(mother,abandon))
  B(child,Intends(Hansel,trail))
  B(child,B(Hansel,Intends(mother,abandon)))
  B(child,B(mother,B(Hansel,Intends(mother,walk))))
  B(child,B(Hansel,B(mother,B(Hansel,
   Intends(mother,walk)))))

We can try to use modal representations to clarify what is meant 
by some rather difficult constructions in English.  For example, 
“John knows whether Mozart composed Fidelio” is perhaps
  K(John,Composer(Fidelio,Mozart)) or
   K(John,not Composer(Fidelio,Mozart))

Maybe “John knows who composed Fidelio” can be rendered as
  Ǝx K(John,Composer(Fidelio,x))

We will consider the sentences “John knows about Fidelio” and 
“John knows how to compose Fidelio” later.

4.3    Modal representations    89   



Clearly, a satisfactory treatment of modal logics requires the use 
of advanced theoretical apparatus.  Sufficient progress has been made 
(Halpern and Moses, 1992) that it is possible to imagine their use as 
the theoretical basis for AI-ED system design, as AI-ED systems are 
essentially concerned with the development of a student’s beliefs 
and knowledge.  

Practically, efficient reasoning in modal logics remains a 
problem because there are no standard theorem-provers as there are 
for predicate logic (one approach, in fact, is to convert modal logic 
sentences into ordinary predicate logic).  These kinds of theoretical 
and practical limitations help to clarify what can be realistically 
attempted with AI-ED systems.

The semantics of modal logics is usually defined in terms of 
possible worlds (Hintikka, 1962).  The intuitive idea is that besides 
the true state of affairs there are a number of other possible states 
of affairs, or possible worlds.  The worlds are connected by an 
accessibility relation R which may be defined to satisfy various 
constraints.  For example, it may be transitive, that is, uRv and 
vRw implies uRw, where u, v and w are worlds.  In each world, a 
proposition is given a truth value.  An agent in a world w is said to 
believe a proposition if it is true in all worlds accessible to w.

The modal logic based on a transitive accessibility relation 
(called ‘weak S4’) can be given a sound and complete proof theory 
comprising the following rules of inference and axioms:
 R1  necessity p → Mp

 R2  modus ponens (p and p → q) → q
 A1  tautologies p, where p is a propositional   
    tautology
 A2  distribution Mp and M(p → q) → Mq
 A3  positive introspection Mp → MMp

Other logics, perhaps less suitable for representing belief, have 
different accessibility relations and use one or more of the following 
axioms:
 A4  knowledge Mp → p

90    Computational Mathetics



 A5  negative introspection not Mp → M(not Mp)

 A6  consistency Mp → not M(not p)

We may note in passing that modal logics of knowledge and 
belief (with and without axiom A4) omit any consideration of the 
need for justifications (as discussed above).  The completeness 
and complexity of variations of these modal logics is discussed 
by Halpern and Moses (1992).  As the semantics associated with 
different accessibility relations can be equivalently represented by a 
set of inference rules and axioms, we will use a sentential semantics 
(as above) rather than possible worlds (Konolige, 1988).  We assume 
that an agent has a base set of beliefs and a (possibly incomplete) 
set of inference rules.  An expression M(a,S) is true if and only if S 
is a member of the base set or can be derived from that set using the 
agent’s inference rules.  

Further consideration of this reasoning process will be deferred 
to the next chapter, except that we should comment that the nature 
of this process will be different for different kinds of agent.  In the 
case of AI-ED, we have a program agent which might aim to reason 
as efficiently as possible on its own behalf, but when it is reasoning 
about a student’s reasoning process, it is necessary to take account 
of psychological aspects.  

For example, any modal logic of belief which includes A1 and 
A2 (as does every modal logic using the possible worlds approach) 
has the property of logical omniscience, that is, the agent believes 
all the implications of its beliefs.  This is considered psychologically 
implausible, of course.  Therefore some kind of ‘limited reasoning’ 
might be defined (as discussed in chapter 5).  Also we might need to 
consider short-term and long-term memory issues, which (roughly 
speaking) correspond to beliefs which are ‘active’ and ‘inactive’.  
We might also consider how more global attributes of agents, such as 
that they are gullible, arrogant, narrow-minded, and so on, might be 
related to properties of their reasoning and other processes (section 
6.9).

4.3    Modal representations    91   



4.4 Situation calculus

Our sentences in predicate logic and modal logic have so far been 
timeless, that is, we have not specified when sentences such as 
B(s,Composer(Fidelio,Beethoven)) 

are supposed to hold.  This is inadequate for AI-ED systems, whose 
express purpose is to change beliefs and knowledge.  

Suppose we wanted to represent a simple ‘transmission’ principle: 
“If a student does not know something and we tell her it then she 
will know it.”  The following attempt:

not K(s,P) and Tell(teacher,s,P) → K(s,P)

is a logical nonsense.  The operators in predicate logic do not have 
an implicit temporal semantics: and and → do not mean ‘and then’ 
and ‘causes’.  Also, Tell is not naturally a relation constant but a 
performative (section 3.6).

One approach to tackling this is to use the idea of a situation, that 
is, an entity which is supposed to denote a snapshot of the universe 
and which can be regarded as a term in predicate logic.  Then, to say 
that a student does not know a proposition in a particular situation, 
say s27, we may write:

not K(s,P,s27) 
where we have introduced an extra term to denote the situation in 
which the assertion holds.  Now, to represent the above principle, we 
need to relate the situations before and after the telling act.  This we 
may do by regarding the performative Tell as a function mapping a 
situation into a new situation.  So,

tell(teacher,s,P,s27) 
is the situation obtaining by applying the tell function when in 
situation s27.  Then the transmission principle can be written:

not K(s,P,t) → K(s,P,tell(teacher,s,P,t)) 
where t represents a situation variable.  In this way, we may develop 
a language for expressing instructional principles, although, of 
course, any worthwhile principle will be much harder to express 
than the above.  We will consider this further in chapter 10.

92    Computational Mathetics



A variation on the above notation is to rewrite expressions of 
the form R(t1,t2,..,t) as Holds(r(t1,t2,..),t), which asserts 
that state r(t1,t2,..) holds in situation t.  For example, the above 
rule becomes:

not Holds(knows(s,P),t) →  
 Holds(knows(s,P),tell(teacher,s,P,t)) 

In other words, the relation constant R is re-expressed as a function 
r, so that r(t1,t2,...) can be regarded as a predicate logic 
object.  The process of converting relations into objects is known 
as reification.  Although the notation is more wordy, it allows us to 
quantify over and apply functions to states.  Also, it allows a more 
natural notation for modifiers of states, such as

thoroughly(knows(s,P))  
than the use of an arbitrary number of extra terms, as in 

K(s,P,thoroughly,t)  
The concept of a situation, which have glibly introduced as an 

object in predicate logic, is of considerable potential philosophical 
and practical importance.  As is well known, the meaning of indexicals 
such as ‘here’ and ‘you’ is situation-dependent, and the same may be 
said of almost any concept or proposition.  For example, a ‘billion’ 
is different in England and America:

Holds(billion=109,America) and     
 Holds(billion=1012,England)  

A student would need to know which context she is in in order to 
carry out arithmetic involving the concept of a billion.  Not only do 
words mean different things in different contexts, but people have 
different abilities in different contexts:

Holds(can-subtract(Fred),darts) and   
 not Holds(can-subtract(Fred),classroom)  

We often ask students to work within a specific context, that is, to 
adopt a set of assumptions temporarily.  For example, we might ask 
an economics student, who perhaps believes most in Keynesian 
principles, to nevertheless adopt a Marxist point of view for the 
purpose of some exercise.

4.4    Situation calculus    93   



While the concept of a situation or context is ubiquitous, for 
everything we say is said within a situation, and we can try to write 
expressions capturing our intuitions, it is very hard to specify a 
satisfactory semantics for situations (although, thankfully, we can 
achieve something without it).  For example, it is not clear that an 
expression Holds(p,t) should even have a truth-value: 
 Holds(Lorentz-transform = ...,Newtonian-mechanics)  
may rather be considered meaningless.  One way to try to define 
a semantics for Holds(p,t) is to try to specify a set of rules of 
inference and axioms, as we indicated with weak S4 for modal logic.  
For example, we could wonder about:

Holds(holds(p,t1),t2) → Holds(holds(p,t2),t1)  
Holds(holds(p,t),t) → Holds(p,t) 

and so on, and, using the modal operators:
Holds(knows(a,p),t) → K(a,Holds(p,t)) 

Meanwhile, computationalists are already using the basic ideas 
of situations and contexts for practical purposes.  For example, we 
can specify that some subset of a knowledge base holds only in a 
specified situation and so work more efficiently on only a portion 
of the knowledge base.  We can also specify relationships among 
situations so that, for example, properties may be inherited. For 
example, from

B(s,Holds(exist(black-holes),universe)) 
B(s,Subset(solar-system,universe)) 
B(s,Holds(p,t) and Subset(t1,t) → Holds(p,t1)) 

we may infer
B(s,Holds(exist(black-holes),solar-system)) 

As the example indicates, we need to be careful in defining such 
relationships.  As we will see, we can allow propositions associated 
with a situation to be inconsistent, and we can also associate rules 
of inference, even unsound ones, with a situation, giving great 
flexibility in representing how an agent reasons.

So, the technical concept of a ‘situation’ has been well-established 
in theoretical AI since the situation calculus was introduced by 
McCarthy and Hayes (1969).  It has been refined and extended to 

94    Computational Mathetics



provide a broad basis for reasoning about time and change.  It is not 
clear that it is broad enough to encompass the notion of ‘situation’ in 
situationism.  Here, a situation is “not a physical setting” but more to 
do with a ‘community of practice’ or a ‘culture’ (Clancey, 1995).  

One can hardly deny that culture is important, but what precisely 
does it mean?  Brown, Collins and Duguid (1989) say that a culture 
is “a system of beliefs about some aspects of the world”, which, on 
the surface, does not seem very different from what we have above.  
Saying that the situation calculus cannot in principle be extended to 
capture the rich notion of a culture that situationists have in mind 
is like saying that mere words cannot capture the taste of wine.  
However, unless we can be more precise about ‘culture’ then AI-
ED systems will simply have to swallow whatever vague notion of 
culture is built into them (for it would be a mistake to assume that 
any system could be culture-free).  

Situated learning theorists argue that learning is or should be 
a process of enculturation.  This is fine, but which culture do we 
mean?  There are a very large, if not infinite, number of cultures.  
Consider the students in the four scenarios described in section 1.1: 
what, precisely, are the cultures into which they are enculturating 
themselves?  Situationists seem to discuss cultures as though, unlike 
knowledge, they already exist in some objective sense.  If asked, 
however, they would no doubt argue that a culture, like knowledge, 
has to be ‘constructed’ - which sounds quite a challenge for a 
learner.  Otherwise, AI-ED systems would be engaged in a process 
of ‘culture transmission’ which sounds even more invidious than 
mere ‘knowledge transmission.’  

The general point is that vague polemical arguments about the 
role of such all-encompassing concepts as ‘culture’ have limited 
utility for AI-ED unless they are grounded in technical definitions 
amenable to theoretical analysis and practical application, especially 
when those arguments use or re-use terms like ‘situation’ which are 
already part of the technical lexicon.

4.4    Situation calculus    95   



4.5 Structured representations

As the above discussion of situations, contexts and cultures 
indicates, the propositions which are ascribed to an agent 

as beliefs or knowledge are rarely to be considered independent 
members of an unstructured set.  A set of propositions may become 
structured in basically two ways: by partitioning the propositions 
into (possibly overlapping) subsets; and by specifying relationships 
between pairs of propositions.  

Let us define an agent’s belief-set Beliefs(a) to be the set of 
beliefs that have been ascribed to the agent a:

Beliefs(a) ≡ { p | B(a,p) } 
Similar sets can be defined for the other modal operators, such as a 
knowledge-set:

Knowledge(a) ≡ { p | K(a,p) } 
An agent’s vocabulary V(a) may be defined to be the set of object, 
relation and function constants referred to in the agent’s belief-set, 
knowledge-set, and so on:
 V(a) ≡ { c | c is an object, relation or function constant
  and c occurs in Beliefs(a) or Knowledge(a) or ... }

An AI-ED system is concerned with some ‘domain’: we talk 
loosely of programs in ‘the domain of algebra’ or ‘the domain of 
meteorology’.  An agent’s domain-vocabulary DV(a) is some subset 
of V(a) which the agent considers to be part of the language for that 
domain.  Obviously, the contents of DV(a) will differ for different 
agents.  An agent's beliefs about a domain, Domain-beliefs(a), is 
the subset of Beliefs(a) which concerns elements of  DV(a):
 Domain-beliefs(a) ≡ { p | B(a,p) and  
  Ǝc ( c in p and c is a member of DV(a) ) }
 Domain-knowledge(a) ≡ { p | K(a,p) and  
  Ǝc ( c in p and c is a member of DV(a) ) }
(In the following, we will restrict consideration to the Believes 
operator.)  The set Beliefs(a) also contains the agent’s beliefs 
about the problem at hand and its ongoing solution, denoted by 

96    Computational Mathetics



Problem-specific-beliefs(a).  So, we can define an agent’s 
background beliefs by:
 Background-beliefs(a) ≡ Beliefs(a) 
  - Domain-beliefs(a)  
  - Problem-specific-beliefs(a) 

When solving problems in a domain an agent may need recourse 
to beliefs in Background-beliefs(a), that is, to propositions 
which appear unrelated to the domain or the specific problem.  This 
is because Domain-beliefs(a) may contain references to constants 
which are not in DV(a) but which are referred to in other propositions 
in Beliefs(a).  These beliefs are indirectly or implicitly related to 
the domain.  We could define:
 Implicit-DV(a) ≡ { c | Ǝp ( c in p and  
  p  is a member of Domain-beliefs(a) or 
  p is a member of Implicit-domain-beliefs(a)) }
 Implicit-domain-beliefs(a) ≡ { p | B(a,p) and  
  Ǝc ( c in p and
   c  is a member of Implicit-DV(a) ) }

The distinction between Domain-beliefs(a) and Implicit-

domain-beliefs(a) may be helpful in cases where an agent does 
not bring to bear beliefs which are not explicitly, obviously useful, 
and is related to the discussion of what constitutes a ‘context’ in the 
previous section.

If we consider a particular constant c (say, Fidelio), then we can 
form a set of the agent’s beliefs (or knowledge) which are explicitly 
about c, or, in other words, have a reference to c:

Beliefs-about(a,c) ≡ { p | B(a,p) and c in p }  
Knows-about(a,c) ≡ { p | K(a,p) and c in p }  

These sets might be considered to represent the agent’s beliefs or 
knowledge about the ‘concept’ c.  That is, what an agent beliefs (or 
knows) about a concept is just the set of propositions which the agent 
believes (or knows) about that concept.  For example, if we take the 
concept of ‘metal’,  we can imagine that for a novice chemist:
 Beliefs-about(a,metal) = { Isa(iron,metal), 
  Isa(steel,metal), not Isa(water,metal), ... 
  Ɐx Isa(x,metal) → Shiny(x),  

4.5    Structured representations    97   



  Ɐx Isa(x,metal) → Hard(x),... }  
For an expert chemist, some propositions will be in terms of the 
electron structure of metals.  This seems to accord with the intuition 
that a concept is not a ‘black-and-white’ notion, that one knows all 
or nothing about.  We could plausibly define:

Knows-of(a,c) ≡ not (Knows-about(a,c) = {}) 
Computationally, there are clearly potential practical benefits in 

‘gathering together’ propositions which appear to be related, rather 
than have to search for them in an unstructured set.  This is the basis 
for all the standard AI work on frames, scripts, schemas, semantic 
networks, and so on, which is obviously relevant, but not specific, 
to computational mathetics, and so will not be elaborated on here.  
In formal terms, there is no difference in these representations, 
because they can all be converted into one another and predicate 
logic, although there is much discussion of their merits in particular 
applications.

The idea of a frame begins to illustrate the second way of 
structuring belief-sets mentioned above, that is, by defining 
relationships between propositions.  A frame is essentially a set 
of relation constants (or slots) which are applied to (or filled by) 
particular values to define a certain concept.  A frame (for example, 
iron, steel, ...) may be defined to be a subclass of other frames (for 
example, metal, noblemetal, ...), in which case it may inherit values 
from the superclass (just as from Ɐx Isa(x,metal) → Shiny(x) 
we may infer Shiny(iron)) .  It may not always inherit values, 
for sometimes values are only default assumptions which may be 
overridden.  For example, most metals are solid at room temperature 
(we will consider this in the next chapter).

4.6 Multiple representations

AI-ED research has always emphasised the need for ‘multiple 
representations’ of knowledge, appreciating that the different 

agents (such as students and experts) have different views and that 

98    Computational Mathetics



in most domains different views are necessary (such as different 
economic theories).  We must distinguish three different uses of the 
term:

For different representations of the • same knowledge, for example, 
the use of predicate logic or semantic networks to represent the 
same knowledge of metals.  In this case, the concern is to enable 
conclusions to be reached more efficiently, not to find different 
conclusions.
For representations of • different knowledge of the same agent, for 
example, to view a prison as a place for incarcerating criminals 
or for rehabilitating them.  This is the idea of context or situation, 
as discussed in section 4.4.  Here, the problem is to find an 
‘appropriate’ view to enable conclusions (which might differ 
from those of another view) or to coordinate the use of more than 
one view.
For representations of • different knowledge of different agents, 
for example, to view a metal in terms of visible characteristics 
(such as shininess and hardness), as a student might, or in terms of 
electron structure, as a teacher might.  In this case, the issue is to 
coordinate or negotiate communication between the two agents.
Computational mathetics is most concerned with the second and 

third uses.  For example, the aim of some AI-ED systems is expressed 
in terms of enabling a student to progress through a succession of 
representations corresponding to increasing levels of expertise in 
the domain (White and Frederiksen, 1990).  In addition, a number 
of studies (for example, DiSessa, 1987) have shown that students 
bring idiosyncratic views of their own to problem-solving and these 
have to be taken account of when interacting with the student, for 
example, when giving explanations.

For example, Kamsteeg (1994) describes (in English) six “naive 
mental models” which students may have about heat and temperature 
and which we can try to define in terms of their beliefs:

A ‘simple particle model’:• 
 Beliefs(s) = { Temperature(body) = 

4.6    Multiple representations    99   



  k x Number-of-heat-particles(body), ... }  
that is, heat is a kind of substance which holds a certain amount 
of temperature.
A ‘refined particle model’:• 

 Beliefs(s) = { Temperature(body) = 
  k x Number-of-heat-particles(body) 
  / Size(body), ... }  

that is, as above except that bigger bodies need more heat particles 
for the same temperature rise.
A ‘resistance model’:• 

 Beliefs(s) = { Temperature(body) = 
  k x Number-of-heat-particles(body) 
   / (Size(body) x Heat-resistance(body)),  
   ... } 

that is, as above except that bodies have a ‘heat-resistant layer’ 
off which heat particles are ‘bounced’ and lost.  The more heat-
resistance a body has, the less its temperature rises for a given 
amount of heat.
A ‘magnet model’:• 

 Beliefs(s) = { Temperature(body) = 
  k x Number-of-heat-particles(body) x 
   Heat-holding-capacity(body) 
   / Size(body), ... }  

that is, as in the refined particle model except that bodies have 
different capacities for holding on to their heat particles.
A ‘simmer model’:• 

 Beliefs(s) = { Temperature(body) = 
  k x Number-of-heat-particles(body) 
  / (Evaporation-rate(body) x time), ... }  

where time is the time since the heat particles were added to the 
body (assumed all at the same time, for simplicity), that is, a body 
loses heat particles to the environment.
A ‘battery model’:• 

 Beliefs(s) = { Temperature(body) = 
  k x Number-of-heat-particles(body) x 
   Quality-of-heat-particles(body), ... }  

100    Computational Mathetics



that is, some heat particles are of better ‘quality’ than others and 
are not so quickly lost (just as some batteries lose volts slower 
than others).
The precise definitions of these models are obviously more 

complex.  Some of them, for example, make subtly different 
predictions about changes of temperature over time, which we 
haven’t addressed above.  We should note also that the six models 
are not all mutually exclusive: they can be combined in various ways 
to give more models than just those listed above.  The ambition to 
use such models to explain and predict student behaviour is fraught 
with considerable difficulty.  Among the problems, some of which 
will be discussed later, are:

Students do not use such models completely consistently - they • 
may switch from one model to another, or misapply a model.
The models themselves may be inconsistent or incomplete.• 
It is often hard to ascribe a particular model to a student on the • 
basis of her behaviour.
Students may not be able to discuss such models directly, at least • 
not in the terms which we have used in the model descriptions 
(for example, the analogies with resistors, magnets and batteries 
are ones which we, as observers, might make, but which 
students themselves may not).

Nonetheless, students do not tackle problems of elementary 
thermodynamics in a random fashion.  They do, to some extent, try 
to develop and apply coherent theories.  For an AI-ED system, it 
seems plausible that it would be useful for the system to have some 
conception of the student’s current model(s).

This example from physics might be taken to imply that the 
student is seeking to develop the one ‘correct’ model.  The same idea 
of multiple representations can (or should) be used in domains, like 
economics, where no one model is distinguished as correct and where 
the students task is more to apply, combine and compare a range of 
models.  In summary, multiple representations are important in AI-
ED for two distinct reasons: to improve problem-solving efficiency, 

4.6    Multiple representations    101   



because different views of a domain are possible, and to develop 
better psychological models of students.  The reasons for adopting 
multiple representations influence how we deal with theoretical and 
practical limitations in using with them.

4.7 Social knowledge

Our notation allows us to nest modal operators concerning 
different agents, for example, to write
B(a,B(b,p))  

to mean that we have ascribed to agent a the ascription of belief p to 
agent b, or more simply that a believes b believes p.  This provides 
our means to describe the interrelationships and interactions between 
members of a society of agents, an understanding of which “is vital 
for story understanding, in automated teaching and in intelligent 
interactive systems” (Davis, 1990), all components of computational 
mathetics.  However, our current ability to describe these aspects 
formally is very limited.

As previous sections discussed, we may partition an agent’s 
beliefs or knowledge into views or contexts.  Clearly, there is likely 
to be some overlap between these views and those of other agents.  
It will be useful to identify those propositions which are common 
to the belief-sets or knowledge-sets of all agents in a society.  For 
example, as they are common, such propositions may not need to be 
communicated or explained to one another.  If

Ɐx K(x,p) 
Ɐx1,x2 K(x1,K(x2,p)) 
Ɐx1,x2,x3 K(x1,K(x2,K(x3,p))) 

and so on, that is, everyone knows p and everyone knows everyone 
knows p and so on, then we say that p is common knowledge to the 
set of agents:

Common-knows({a1,a2,a3,...},p) 
Common-knowledge({a1,a2,a3,...}) ≡  
 { p | Common-knows({a1,a2,a3,...},p) } 

This set of agents is sometimes called ‘any fool’.  

102    Computational Mathetics



As with single-agent modal logic, we can try to define some 
axioms for common knowledge, for example,
 Common-knows(x,p) →  
  Common-knows(x,Common-knows(x,p)) 
 Common-knows(x,p) and Common-knows(x,p→q) →  
  Common-knows(x,q) 
The idea of common knowledge has been studied in fields as diverse 
as distributed computer systems (Halpern and Moses, 1992) and 
philosophy (Strawson, 1971).  Implicit in the notation is a view that 
the (common) knowledge of a set of agents is the intersection of 
the individual agent’s knowledge.  Of more potential relevance to 
AI-ED, given the enthusiasm for collaborative learning, is the view 
that the knowledge of a set of agents is the union of the individual 
agent’s knowledge.  Unfortunately, no formalisations of this view 
seem to exist.  We could imagine that the set’s knowledge can be 
used to solve a problem not solvable by any single agent, perhaps 
leading to each agent believing all propositions necessary to solve 
that problem:
 B(a1,p,t) and B(a2,p→q,t) →  
  B({a1,a2},{p,p→q},t) 
 B(x,{S,S→T},t) → Solves(x,T,{S,S→T},t) 
 Solves(x,y,z,t) →  
  Ɐa,p (a is member of x and  
    p is member of z → B(a,p,solved(y,t))) 

There has been more work on multi-agent collaborative or 
cooperative planning than there has on multi-agent problem-solving.  
This may have relevance to computational mathetics as student and 
teacher agents have common and conflicting goals which should be 
taken into account.  Issues that need to be considered include:

The division of tasks between the various agents.• 
The communication of relevant information between agents.• 
The prediction of how other agents will react to a request.• 
The coordination of plans which may hinder or obstruct one • 
another.

Some of these issues will be considered in later chapters.

4.7    Social knowledge    103   



4.8 Procedural representations

The idea touched upon in the previous section that knowledge exists 
(only) as a social construct is offered as a radical alternative to 

the standard cognitive science view that knowledge is an individual 
cognitive construct.  Another possibility is that knowledge exists 
(only) in action:

“Action is involved in knowledge ... in the sense that knowledge is a 
form of action, and that action is one of the terms by which knowledge 
is acquired and used.” (Hofstadter, 1962)

The relation between knowledge and action has also concerned 
philosophers.  For example, Ryle (1949) is often selectively quoted 
for writing that “It is ... possible for people intelligently to perform 
some sorts of operations when they are not yet able to consider any 
propositions enjoining how they should be performed” in order to 
justify a ‘knowledge without representations’ philosophy (Brooks, 
1991).  In fact, Ryle was arguing that mental concepts refer not to 
unwitnessable activities in the mind but to dispositions to behave 
in certain ways in appropriate circumstances (much as we have 
assumed).  One can have behaviour without (symbolic) knowledge 
and also knowledge without behaviour.  Whitehead (1932) referred 
to ‘inert ideas’, knowledge which appears to exist (perhaps because 
it can be stated) but which is not applied when it should be.  

The fact that humans can behave without knowing and can 
know without behaving is not a reason that AI-ED systems should 
aim for such an outcome.  Sometimes it is sufficient to be able to 
behave without being able to articulate propositions underlying that 
behaviour.  For example, I can use my phone without being able to 
say precisely how, by giving a description of the layout of buttons.  
But then I never use my phone without it being literally to hand, 
so that the layout of buttons is not a problem.   However, if I were 
incapacitated (perhaps after being attacked by a burglar) then it might 
be useful to be able to articulate an explicit procedure executable by 
my four-year-old daughter (if I had one).

104    Computational Mathetics



Ryle (1949) commented that “efficient practice precedes the 
theory of it.”  To which, one may respond “not always.”  Sometimes 
there is a lot of efficient practice and no theory; sometimes there is 
more inefficient practice than there is efficient practice; sometimes a 
good theory precedes efficient practice.  Usually, practice and theory 
develop together in mutual support.  In some ways, the rationale 
for our own discussion about AI-ED mirrors this debate.  We 
might believe that AI-ED system designers can successfully design 
AI-ED systems without being able to consider any propositions 
enjoining how they should be designed.  Or we might believe that 
the development of a good theory might contribute to the efficient 
practice of AI-ED system design.

Situationists believe that the link between mental structures and 
behaviour is the wrong way round in conventional cognitive science 
and AI, which emphasises transition 1 in this diagram, that is, the 
view that behaviour follows from instantiating and interpreting 
underlying mental structures.

 Situated cognition, on the other hand, focusses on transitions 2 
and 3.  Hanks (1991) writes that there is a “potentially radical shift 
from invariant structures to ones that are less rigid and more deeply 
adaptive.  One way of phrasing this is to say that structure is more the 
variable outcome of action than its invariant precondition ... It (i.e. 
behaviour) involves a prereflective grasp of complex situations.”

The field of AI has debated the ‘declarative/procedural 
controversy’ (Winograd, 1975) almost to exhaustion.  In order to 
situate the situated cognition position, it is worth briefly summarising 

Individual, cognitive 
mental structures

Behaviour

Situation

1

2

3  

 

4.8    Procedural representations    105   



the use of production systems, a common representational scheme in 
AI-ED and in expert systems and psychological modelling.  With 
this scheme an agent is ascribed a set of condition-action rules.  
The ‘condition’ is expressed as a list of patterns which are matched 
against items in a working memory (the agent’s problem-specific 
knowledge).  The ‘action’ describes changes to the contents of the 
working memory.  Typically a problem is solved by repeatedly 
applying rules whose conditions match items in the changing 
working memory.  For example,
 Knows-how(a,to-boil-an-egg): 
  If Water-in-pan-is-boiling  
   Then Put-egg-in and Turn-egg-timer 
  If Pan-is-empty Then Add-sufficient-water 
  If Egg-timer-has-run-through  
   Then Remove-boiled-egg and Turn-gas-off 
  If Pan-has-water and Gas-is-off  
   Then Turn-gas-on 
  If Egg-timer-is-running  
   Then Do-the-daily-crossword 
As rules only fire if their conditions are satisfied, the order of the 
rules (in simple cases) does not matter and it is possible to add rules 
to handle further situations.  The refinements of production systems 
are discussed in any standard AI text.  That the distinction between 
‘procedural’ knowledge and ‘declarative’ knowledge is hazy is clear 
from considering the similar notation of the Prolog programming 
language, where a single definition can serve as both a proposition, 
returning true or false, and as a procedure computing a value.

Usually, production systems contain many hundreds of rules.  
Their main virtues are said to be that the rules can be independently 
associated with individual actions, and that the rules can be 
independently articulated.  The virtues and limitations of production 
systems for AI-ED purposes have been thoroughly discussed 
(Anderson, Boyle, Corbett and Lewis, 1990; Clancey, 1987).  The 
main point to make here is that the approach does indeed emphasise 
transition 1 (in the above diagram) but it does not entirely neglect 
the other two transitions.  The rules themselves do not entirely 

106    Computational Mathetics



determine behaviour - they are adapted by the ‘situation’ represented 
by the working memory.  Also, the actions may, if desired, change 
the mental construct itself, by amending existing rules or adding 
new ones.  Of course, these processes may not fully capture what 
situationists have in mind.

Similarly, as the above quote from Hanks (1991) shows, situated 
cognition does not entirely ignore the role of mental structures in 
determining behaviour.  However, we may ask:

What exactly is a “less rigid and more deeply adaptive” • 
structure?  Is it a different kind of structure to the productions 
systems, blackboards, frames, and so on developed in AI?  All 
of these are adaptive to some extent - but what extra or different 
does “deeply adaptive” mean? 
How is such a structure used to provide “a prereflective grasp of • 
complex situations”?  How does this differ from, for example, 
a rule which carries out a very ‘superficial’ matching of the 
situation to provide a ‘grasp’ of it?
What kind of structure is it that “is more the variable outcome • 
of action”?  Is the structure produced as outcome of action very 
different in kind to that postulated in standard cognitive science 
as the input to action?  If not, is it acceptable to use standard 
schemes to represent such outcome structures?
How long do these outcome structures last?  Can they be used • 
as the ‘less rigid’ structures providing ‘prereflective grasps’ of 
later situations?  If not, why do agents bother to create such 
structures?

As more precise answers to these kinds of questions are developed, 
it is likely that situated cognition will become seen mainly as a 
theory emphasising aspects of cognition which have been neglected 
in previous approaches and which are particularly important in 
some circumstances, but not as a theory warranting the wholesale 
jettisoning of theories and techniques already found useful in other 
circumstances.

4.8    Procedural representations    107   



5

Reasoning

In this chapter we will consider how agents reason with mental 
components such as beliefs.  We will interpret the word ‘reason’ 

broadly to include any process by which an agent derives conclusions 
from premises during the course of problem-solving.  The process 
need not be considered sound or rational in the logical sense, because, 
of course, some agents are not always sound and rational.  We will 
try to be explicit about these reasoning processes because:

In current AI-ED systems these processes are often buried in • 
executable code and not amenable to any kind of theoretical 
comparison.
An AI-ED system which has access to explicit reasoning processes • 
may be able to reason about them and not just about beliefs and 
knowledge.  The system may be able to discuss and explain such 
reasoning processes, possibly in a domain-independent way, and 
so move beyond solely domain-related issues.
It may be possible to customise representations of reasoning • 
processes in order to describe different agents (for example, 
different students) or the same agent at different times (if, for 
example, a student learns a new reasoning process).
By identifying reasoning processes appropriate for different • 
agents we may be able to separate computational and cognitive 
issues, which are currently intertwined.  For computer agents, 
it may be that efficiency considerations are most important; for 
student agents, psychological validity may be most important.
In order to discard beliefs, it may be useful to record how they • 
were derived, which is only possible if the reasoning processes 
can be monitored.

108    Computational Mathetics



A range of reasoning processes will be described, with a modest 
degree of formality.  It is not the aim to develop a complete, ‘correct’ 
representation.  Rather the aim is to develop illustrative notations 
of sufficient precision that we may determine which properties of 
reasoning processes are relevant to particular AI-ED applications.  
Considering the computational complexity of the various notations 
might help clarify the compromises necessary to achieve practical 
performance.  Just as the previous chapter tried to consider belief 
and knowledge independently of the uses to which it may be put 
(the subject of this chapter), so in this chapter we will consider 
the reasoning processes that an agent may have available without 
considering which of the processes an agent may choose to apply in 
any particular problem-solving context (which is considered in the 
next chapter).  

5.1 Reasoning schemata

A representation such as B(a,Metal(x) → Shiny(x)), which 
may be intended to denote that an agent a has been ascribed 

the belief that all metals are shiny, does not indicate how the agent 
may use this belief to derive conclusions.  We could imagine that the 
agent might in different situations, such as the presence of an object 
b which is or is not a metal or is or is not shiny, infer Shiny(b) or 
not Shiny(b) or Metal(b) or not Metal(b), respectively.  Some 
of these inferences are valid in standard logic, and some are invalid 
but nonetheless plausible.  For more complex beliefs it is naturally 
harder to say what inferences might follow.

We will use the notation
Reasons(a,(S1,S2,S3,... >> T)) 

to indicate that we have ascribed to agent a the ‘reasoner’ 
S1,S2,S3,... >> T.   

The reasoner S1,S2,S3,... >> T indicates that if we have ascribed 
beliefs S1,S2,S3,... to the agent then it may be necessary to also 
ascribe the belief T, as the agent considered to hold those beliefs 

5    Reasoning    109   



may make that inference.  (The use of >> (rather than →) is intended 
to indicate that this is not necessarily a sound inference.)  So, for 
example, from

Reasons(a,(P → Q, Q >> P)) 
B(a,Metal(x) → Shiny(x)) 
B(a,Shiny(steel)) 

we may need to make the ascription
B(a,Metal(steel)) 

As this example indicates, a reasoner is a schema which needs 
to be instantiated to match particular beliefs (we will consider this 
further below).  We use the term ‘reasoner’ to avoid the connotations 
of phrases such as ‘rule of inference’ or ‘operator’.  As we did in 
section 4.5 for beliefs, so we may define an agent’s reasoner-set 
Reasoners(a) to be the set of reasoners ascribed to the agent:

Reasoners(a) ≡ { r | Reasons(a,r) } 
We may now illustrate some reasoners which may be relevant to 
AI-ED.

5.1.1 Reasoning in standard logics

The reasoner:
P → Q1, not P → Q2 >> Q1 or Q2  

or equivalently
not P or Q1, P or Q2 >> Q1 or Q2  

describes the rule of inference called resolution, which is known 
to be sound and complete in predicate logic.  To apply the rule it is 
best that all the sentences are in conjunctive normal form (section 
4.2).  The rule of resolution is the basis for standard theorem-
provers in predicate logic, the programming language Prolog, and 
the rule-matching mechanism of production systems.  The precise 
definition of resolution, explaining how variables may be substituted 
to make expressions unify (that is, become the same), is given in any 
theoretical AI textbook (such as Genesereth and Nilsson, 1987).  

A special case of the rule is when Q1 and Q2 are both empty:
not P, P >> false  

110    Computational Mathetics



that is, the agent may infer false if there are two propositions in 
the belief-set which directly contradict one another.  As resolution is 
complete (that is, any sentence logically implied by a set of sentences 
can be derived by repeated applications of the rule of resolution), if a 
set of sentences S1, S2, ..., Sn is contradictory then false may 
be derived from them.  

In such a case, 
not(S1 and S2 and ... and Sn)  

is a theorem, by definition. Or, equivalently, 
S1 and S2 and ... → not Sn  

is a theorem.  Therefore, to show that an expression of the form
S1 and S2 and ... → T  

is a theorem (as discussed in section 4.2) one may negate the 
conclusion T and show that 

S1 and S2 and ... and not T  
leads to false after applying resolution.  Although this procedure 
is not guaranteed to terminate (as predicate logic is an undecidable 
system), there has been much research on developing efficient 
theorem-provers.

This reasoner may be used by a system agent to reason about its 
own knowledge, or to reason about what is implied by the beliefs 
ascribed to a student.  However, the reasoner is of little use if the 
system needs to reason about the student’s beliefs in the same way 
that the student does or might, because it is implausible, to say the 
least, that a student will apply anything comparable to the rule of 
resolution.  The reasoner is also of little use if the system needs 
to reason about its own knowledge and explain its reasoning to a 
student (as resolution is not likely to be comprehensible).  Thus, 
resolution cannot be used to model students’ reasoning processes or 
to explain reasoning processes.

Rules of inference for a logical system may be defined which are 
intended to give proofs that are closer to those that human theorem-
provers produce.  We could, for example, have reasoners such as:

P and Q >> P 

5.1.1    Reasoning in standard logics    111   



P → Q, P >> Q  (a rule called ‘modus ponens’)
P → Q, not Q >> not P  (a rule called ‘modus tolens’)
P → Q, Q → P >> P ↔ Q 
... 

Such a ‘natural deduction’ set of reasoners might be more useful 
for modelling the reasoning processes of students than the rule of 
resolution.  For convenience, we can attach names (such as modus-
ponens and modus-tolens above) to individual reasoners, as indicated 
above.

If the aim of the reasoner-set is to provide an ascription to a 
student which corresponds to problem-solving performance then it 
might be necessary to include reasoners which are unsound:

P → Q, Q >> P 
P → Q, not P >> not Q   

Apart from having faulty reasoning schemata, students may also 
not have a complete set of ‘correct’ reasoners.  All the issues which 
arise when attempting to model students’ knowledge (chapter 4), 
arise also with respect to their reasoning processes, although few 
AI-ED systems attempt to model the latter.  (Note that the process 
of reasoning unsoundly is different to the process of reasoning with 
inconsistent premises, the latter being discussed briefly in section 
5.4.)

The previous examples suggest that our reasoners are just rules 
of inference in a formal logic system.  However, we would also 
consider what are in some domains called ‘operators’ to be examples 
of reasoners.  For example, in algebra, we might consider that an 
equation such as x=c(e) where c is an integer and e an expression, 
can be rewritten as x=ce where ce denotes the result of applying a 
multiplying-out operator.  We could represent this by:

Equation(x=c(e)) >> Equation(x=ce) 
In this case, because we are likely to need to keep a record of the 

operators applied, we might use the situation variable introduced in 
section 4.4:

Equation(x=c(e),t) >>  
 Equation(x=ce,multiply-out(t))) 

112    Computational Mathetics



We could similarly represent normal rules of inference, to label them 
and keep a track of problem-solving performance.  For example, 
from

Reasons(a,(P → Q, P >> Q),t) 
B(a,Metal(x) → Shiny(x),t) 
B(a,Metal(steel),t) 

we might derive
B(a,Shiny(steel),modus-ponens(t)) 

AlgebraLand (Foss, 1987) provides a menu of such operators.  
In this case, it is assumed that students understand all the operations 
denoted by the menu items.  Therefore, the problem of ascribing an 
appropriate reasoner-set to the student is bypassed.  Many simulation-
based systems adopt a similar approach.  For example, a simulated 
chemistry lab might provide a menu of chemical operations for 
students to select from.  It would be assumed that students know what 
the operations are and that their problem is more one of determining 
an appropriate sequence of operations (in this case, perhaps, to 
prepare a specified chemical).  In more open environments, where 
students can carry out their own operations, there is obviously a 
difficult diagnosis problem for a system to ascribe reasoners to a 
student.  For example, if a student is attempting to solve a symbolic 
integration problem (and there is no prescribed menu of allowable 
transformations) then it can be hard to determine an operation 
whereby the student has moved from one expression to another, 
especially as the transformations may be incorrectly applied.

5.1.2 Reasoning in nonstandard logics

There is a large variety of ‘nonstandard’ logics which attempt to 
overcome some of the apparent shortcomings of predicate logic.  
For example, the following theorems

P → (Q → P) 
(P and not P) → Q 

may appear paradoxical if we consider that P → Q should indicate 
some kind of causality between P and Q.  It is possible to define 

5.1.1    Reasoning in standard logics    113   



logics with different notions of validity than predicate logic.  For 
example, relevance logic (Anderson and Belnap, 1975) denies the 
above paradoxes and requires that one proposition entails another 
only if there is an element of causality that relevantly connects 
them.    In this logic [P,S] means that the sentence P was derived 
from sentences in its ‘origin set’ S and we have rules of inference 
such as:

[P,S], [Q,S] >> [P and Q,S] 
[P,S1], [Q,S1 + S2] >> [P → Q,S2] 

(I will use + to denote the union of two sets.)  The first rule says 
that if P and Q are sentences with the same origin set, then we can 
deduce P and Q and associate it with the same origin set.  Relevance 
logic has been used in work on belief revision (section 7.2.4) and 
is presumably partly motivated by a feeling that human reasoning 
follows such schemata rather than those of standard logic.  Several 
other nonstandard logics will be introduced later.

Many studies have indicated that humans, even those with training 
in formal logic, do not find it easy to apply abstract reasoners of the 
above kinds.  Holland et al (1986) develop the idea of a pragmatic 
reasoning schema which is intermediate between an abstract rule 
and a domain-specific rule.  Such a schema is a “set of generalized 
context-sensitive rules which, unlike purely syntactic rules, are 
defined in terms of classes of goals (such as taking desirable actions 
or making predictions about possible events) and relationships to 
these goals (such as cause and effect or precondition and allowable 
action)”, for example:
 Goal(x) and Precondition(x,y)  
  >> Must-satisfy(y) 
 Goal(x) and Precondition(x,y) and Can't-satisfy(y)  
  >> Can't-do(x) 
Pragmatic reasoning schemata are abstract rules in that they apply to a 
wide range of content domains but they are constrained by particular 
inferential goals and event relationships.  They are, to some extent, 
‘situated’.  The degree to which students can be usefully ascribed 
such pragmatic schemata is a matter of debate. 

114    Computational Mathetics



Reasoners may be more or less abstract, and more or less domain-
independent.  Formal logic rules of inference are intended to be 
abstract and domain-independent, pragmatic reasoning schemata 
less so.  Operators such as integrate-by-parts are abstract but 
fairly domain-dependent (of course, it depends how we define the 
‘domain’).

Abstract reasoners may be made more ‘concrete’ by instantiating 
them.  For example, from the modus ponens reasoner

P → Q, P >> Q 
we can obtain instantiations such as

Rainy → Umbrella, Rainy >> Umbrella  
Planet(x) → Orbits(x,sun), Planet(neptune)  
 >> Orbits(neptune,sun) 

A person might believe the proposition Rainy → Umbrella, or ‘if 
it is rainy take an umbrella’, but only if she actually behaved as the 
rule implies in relevant situations might we wish to ascribe to her the 
reasoner above.  If a student behaved in such a way that we might 
ascribe both the above reasoners to her we would not necessarily 
wish to ascribe the general form of the rule (as there might be other 
situations in which modus ponens is not applied, for some reason).  

There is a range of possible abstractions of a particular reasoner.  
For example, we might have:

Planet(x) → P(x,sun), Planet(k1) >> P(k1,sun) 
Q(x) → R(x,k2), Q(k1) >> R(k1,k2) 

where P, Q and R are arbitrary relations.  (Note that these reasoners 
are not in predicate logic syntax - to make them so, we could 
reify the relations, as discussed in section 4.4.  Also the variables 
k1 and k2 are not normal variables, for the intention is that they 
stand for any object constant.  These are difficult technical issues 
which would need to be addressed in any full theoretical analysis or 
implementation.)  

Given a domain-vocabulary, we could proceed to define a 
Domain-reasoners(a) set analogous to the Domain-beliefs(a) of 
section 4.5.  We could also define a set of Abstract-reasoners(a) 
which contains those reasoners in Reasoners(a) which do not 

5.1.2    Reasoning in nonstandard logics    115   



refer explicitly to any object, relation or function constant, such 
as the last reasoner above.  We could define the other reasoners in 
Reasoners(a)to be in Concrete-reasoners(a), although they 
may still have object, relation or function variables within them (as 
in the last but one reasoner above). 

A member of Abstract-reasoners(a) could not be a member 
of Domain-reasoners(a) because it does refer to any member of 
the agent’s vocabulary.  After instantiation, an abstract reasoner 
could be applied to any number of domains.  It is arguable that 
an agent which may be ascribed an abstract reasoner, rather than 
a series of instantiations of it, is a more capable problem-solver, 
showing a deeper understanding of the general processes of deriving 
conclusions from premises.  

On the other hand, the specific instantiations may be more 
efficient to apply.  Acquiring a more abstract reasoner may be a step 
towards ‘transfer’ (section 6.7), that is, the ability to apply skills 
acquired in one domain to a second domain.  Hutchins (1991) gives 
the example of a pilot who has learned situation-specific skills of 
the form “When the dial indicator reaches a certain point, then drop 
the wing flaps”, bypassing the official ‘abstract’ rule given in the 
technical handbook which requires a simple calculation involving 
height and speed.  The former reasoner is adequate until the pilot is 
transferred to a different plane.

5.1.3 Reasoning in modal logics

So far in this section we have only considered the case where a 
reasoner is expressed in terms of sentences in predicate logic (or 
something close to it).  The 

Reasons(a,(S1,S2,S3,... >> T)) 
notation indicates we might infer B(a,T) from B(a,S1), B(a,S2), 
B(a,S3), ...  If the sentences S1,S2,S3,...,T do not contain any 
modal operators then we may consider only how an agent might 
reason in predicate logic (or something similar) and omit the 

116    Computational Mathetics



B(a,..)s from our notation, as we have above.  However, matters 
are more complicated if we have, as we do in AI-ED, beliefs about 
other agent’s beliefs (or about one’s own beliefs), such as

B(c,B(s,Metal(x)→Shiny(x))) 
that is, the computer system believes that the student believes all 
metals are shiny.  Let us imagine that we also have

B(c,B(s,not Metal(mercury))) 
B(c,B(s,Metal(iron))) 
B(c,B(s,Shiny(mercury))) 

If we have 
Reasons(c,(P → Q, P >> Q)) 

then nothing follows from the above four belief ascriptions.  We 
could try:

Reasons(c,(B(s,P → Q), B(s,P) >> B(s,Q))) 
or maybe

B(c,Reasons(s,(P → Q, P >> Q))) 
These two expressions differ in who the reasoning is ascribed to.  In 
either case, we might want to infer:

B(c,B(s,Shiny(iron)))   
However, we cannot simply take one agent’s reasoners and 

effectively ascribe them to a second agent, because the second agent 
may reason differently.  If, for example, we have

B(c,Reasons(s,(P → Q, Q >> P))) 
then perhaps we should be able to infer

B(c,B(s,Metal(mercury))) 
and hence that the system believes that the student may derive a 
belief which contradicts an already held belief.

We may define the set of beliefs and the set of reasoners which 
an agent a ascribes to an agent b:

Beliefs(a,b) ≡ { p | B(a,B(b,p)) } 
Reasoners(a,b) ≡ { r | B(a,Reasons(b,r)) } 

We may define a function Interpret which maps a reasoner-set 
and a belief-set into a new belief-set. Interpret is a program which 
describes how particular reasoners actually generate new beliefs: it 
is considered further in chapter 6.  In the above example, there are 

5.1.2    Reasoning in modal logics    117   



nine possible applications of the function Interpret, most of which 
are of potential relevance to AI-ED:

Interpret(Reasoners(c),Beliefs(c))•  - how the computer 
program reasons about the domain;
Interpret(Reasoners(c),Beliefs(s))•  - how the program 
would reason about the domain using the student’s beliefs 
(which, of course, are generally not known);
Interpret(Reasoners(c),Beliefs(c,s))•  - how the program 
would reason about the domain using the beliefs ascribed to the 
student by the program;
Interpret(Reasoners(s),Beliefs(s))•  - how the student 
reasons about the domain;
Interpret(Reasoners(s),Beliefs(c,s))•  - how the student 
would reason about the domain using the beliefs ascribed to her 
by the program;
Interpret(Reasoners(c,s),Beliefs(c,s))•  - how the 
program believes the student would reason about the domain 
using the beliefs ascribed to her by the program.
In general, we identify a set of belief-sets (the beliefs ascribed to 

an agent, or ascribed by one agent to another) and a set of reasoner-
sets (the reasoners ascribed to an agent, or ascribed by one agent to 
another).  For a given belief-set BS and reasoner-set RS, a proposition 
p is provable, with respect to this belief-set and reasoner-set, if and 
only if Interpret(RS,BS).  If we wish, we could say that p is true 
according to this belief-set and reasoner-set.  At this stage, we make no 
assumptions about the completeness or consistency of the belief-sets 
and reasoner-sets, although obviously some undesirable properties 
will cause problems for Interpret.  In particular, we expect the 
reasoner-sets to be limited in various ways, for computational and 
psychological reasons.

This arbitrarily nested, multi-agent notation is more complex 
than the formal modal logics for which theoretical treatments have 
been developed.  Most of this work has used variations of the axioms 
and rules of inference given for a uni-agent modal logic in section 

118    Computational Mathetics



4.3.  All of the axioms have some plausibility (which is why they 
are suggested, of course) but all seem to have computational and 
philosophical limitations.  For example, the ‘negative introspection’ 
axiom applied to belief:

not B(a,p) → B(a, not B(a,p)) 
seems to support the intuition that if I don’t believe a proposition 
then I believe that I don’t.  We might need such an axiom when 
a student becomes aware of her own lack of knowledge.  But 
how do we determine not B(a,p)?  There is an infinity of such 
negative sentences - both computer and human agents are unlikely 
to have it ‘stored’ in any sense and will have to derive it, perhaps by 
showing B(a,not p), a process related to the problems of logical 
omniscience mentioned in section 4.3.  Philosophers labour to re-
express the axioms to capture the nuances of the notion of ‘belief’.  
One suspects that this is an ultimately futile exercise, just as it is for 
linguists to try to define grammars which precisely define all and 
only the sentences of a natural language.  However, just as limited 
grammars are useful in computational linguistics, so limited axioms 
for modal logics may be useful in computational mathetics.

In this section we have considered only the problem of defining 
axioms and rules of inference for the Believes modal operator.  
Similar definitions would be needed for any other modal operators 
which we feel we need in computational mathetics, and we would 
also need axioms for reasoning about combinations of the operators.  
We would also need to represent the dynamic aspects of such 
ascriptions, because, as discussed above, the whole point of AI-ED 
is to facilitate such change.  All this is obviously a formidable task, 
especially for a multi-agent logic.  However it may only be through 
developing such definitions that the subtle differences between 
modal operators can be explicated and precise specifications of AI-
ED systems given.  

For example, Baker (1994) argues that at least in negotiative 
learner-teacher dialogues a more useful ascription to students is that 
of ‘acceptance’ rather than ‘belief’.  Of course, merely changing the 

5.1.2    Reasoning in modal logics    119   



name of the ascription makes not a scrap of difference.  To make a 
difference, we (ideally) should provide axioms and rules of inference 
for Accepts which define how it differs from Believes.  Informally, 
the main differences are intended to be that:

An agent can decide to accept a proposition but not to believe it.  • 
Thus, there is a different relation between Decides and Accepts 
than between Decides and Believes, where Decides is some kind 
of modal operator dealing with an agent’s decisions.  What can be 
accepted presumably depends on what is already believed.
“To accept a proposition is to be willing to use it in one’s reasoning, • 
but not necessarily to adopt it in any reasonably stable sense (like 
belief).”  So acceptances are relatively temporary.  An acceptance 
disappears for one of two reasons - there is evidence to drop it, or 
it transforms into something more stable, like belief.
Acceptances are more readily dropped than beliefs.  As • 
propositions are accepted only ‘for the sake of the argument’, if 
the argument indicates that they are unsound then they are more 
readily discarded.
More successful acceptances transform into beliefs, not through • 
the passage of time but after the accepted proposition has been 
found sufficiently useful for problem-solving.  For AI-ED systems, 
this is the intention because we would not want students to just 
accept any proposition but never come to believe it.
“What a speaker says .. is not necessarily a direct reflection of • 
what he believes but .. rather of what the speaker is prepared to 
accept.”  So discussions of dialogue (chapter 9) might be expressed 
in terms of Accepts rather than Believes.
Certainly, students are uncomfortable with ascribing beliefs to 

themselves.  If asked, they prefer not to admit to ‘beliefs’, which 
seem to require some reasoned commitment which they are not yet 
prepared to make.  Unlike experts and AI systems, students do not 
anticipate problem-solving success and therefore are fully prepared 
to find that propositions used in problem-solving are in fact unsound.  
Rather, they are prepared ‘to go along with’ (or accept) propositions 

120    Computational Mathetics



and see how things work out.  Therefore it seems likely that 
computational mathetics will benefit from a more precise definition 
of acceptance than the informal statements above, although the 
philosophical logicians (such as Cohen, 1992) who have considered 
the nature of acceptance and belief have yet to tackle this.

5.2 Limited reasoning

Even the simplest of the reasoning schemata given above has 
potential problems.  For example, the resolution rule may be 

applied forever in an attempt to derive a particular conclusion, as 
predicate logic is undecidable.  We cannot just apply all reasoners 
repeatedly until no further conclusions can be drawn (for example, 
the introspective rules in modal logics are recursive).  This would be 
unreasonable computationally (as it would take much too long, in 
general), psychologically (as human agents do not draw all possible 
conclusions from their beliefs) and philosophically (it seems strange 
to say that an agent believes a proposition if it takes it several minutes 
of intense reasoning to determine that it does).  

Therefore it is necessary to consider various kinds of ‘limited 
reasoning’, that is, reasoning in which only a subset of the potential 
applications of reasoners are actually carried out.  There are two 
kinds of limitation - those in which the set of beliefs is restricted 
and those in which the limited time available is taken into account.  
The latter is considered in chapter 6.  Concerning the former, we 
will consider the ideas of implicit and explicit belief and of local 
reasoning.

5.2.1 Implicit and explicit beliefs

Levesque (1984) distinguishes between implicit belief and explicit 
belief, the former being what we have just called ‘belief’ and the 
latter being a belief which the agent considers relevant or which 
has been ‘activated’ by the agent.  Explicit beliefs are the effective 

5.1.2    Reasoning in modal logics    121   



beliefs of the agent (effective in the sense that they may be used to 
reason with to solve problems).  The set of implicit beliefs provides 
an upper bound on the set of explicit beliefs: no agent can explicitly 
believe more than it implicitly believes.  Some say that the explicit 
beliefs describe a ‘realistic’ agent and the implicit beliefs an ‘ideal’ 
agent, although there is little ideal in being thoroughly inefficient.  
Others, of a psychological orientation, draw analogies with working 
memory and long-term memory (which we will not pursue here).

The logic has two modal operators, I-believes and E-Believes.  
Implicit belief is modelled by possible world semantics (as above) 
but explicit belief requires a modified version.  Levesque adopts the 
idea of a ‘situation’ from situation semantics (Barwise and Perry, 
1983), which is not quite the same as the ‘situation’ in section 4.4.  In 
this kind of situation a proposition may be true, false, both or neither.  
A complete, coherent situation, that is, one in which all propositions 
are true or false, corresponds to the standard possible world, but we 
may also have an ‘incoherent world’ in which a proposition may be 
both true and false and a ‘partial world’ in which it may be neither 
true nor false.

By specifying a semantics similar to that for relevance logic, it 
can be shown that explicit belief does not suffer from the problem 
of logical omniscience.  For example, the following formulae are all 
satisfiable:
 E-believes(a,p and not p) 
 not E-believes(a,p or not p) 
 E-believes(a,p) and E-believes(a,not p) 
 E-believes(a,p) and E-believes(a,p → q) and 
  not E-believes(a,q) 

The properties of explicit belief follow from the incoherence 
and incompleteness introduced in situations.  The former leads 
to the possibility of believing unsatisfiable propositions and the 
latter to the possible lack of belief of valid propositions.  In this 
way, it is possible to define formal logics to express some aspects 
of the inconsistencies and incompletenesses which students display.  
However, many subtle issues remain.  For example, if reasoning is 

122    Computational Mathetics



considered to be carried out with respect to the situations thought 
possible by the agent, is it reasonable to allow incoherent situations 
as being possible?  Also, the effect of imperfect reasoning in classical 
logic is achieved by assuming perfect reasoning in a non-classical 
logic, which seems rather odd.

Fagin and Halpern (1987) attempt to isolate the advantages given 
by Levesque’s notion of incomplete situations by defining a syntactic 
awareness function.  The intuition is that an agent cannot believe 
a proposition if it is not aware of it.  Instead of using incoherent 
or partial worlds, Fagin and Halpern use standard possible worlds 
with the awareness function to filter out those formulae of which the 
agent is unaware.  A world w supports the truth of E-believes(a,p) 
if all the worlds the agent considers possible in w support the truth 
of p relative to the set of primitive propositions of which the agent 
is aware in world w.  Implicit belief is as before and explicit belief is 
similar to Levesque’s except that (1) an agent’s set of explicit beliefs 
is closed under implication and (2) an agent cannot hold inconsistent 
explicit beliefs.  For example, E-believes(a,p and not p) is not 
satisfiable.

Consider the following belief-set:
 E-believes(c,Foreigner(s)) 
 E-believes(c,Foreigner(x) → not Aware(x,sconce)) 
 E-believes(c,Prerequisite(sconce,etiquette)) 
 E-believes(c,not Aware(s,y) and Prerequisite(y,z) 
   → not Infer(s,z)) 
that is, the system explicitly believes the student to be a foreigner, 
that all foreigners are unaware of the concept of a sconce (which is a 
fine imposed at Oxbridge), which is a prerequisite for understanding 
Oxbridge college dining etiquette, and that a student cannot infer a 
proposition if she is unaware of a prerequisite concept.  In such a 
case the system cannot show that the student can infer etiquette 
because she is unaware of a prerequisite concept (Infer is a ‘meta-
level predicate’ which is considered further in chapter 6).

A major benefit for student modelling purposes offered by 
this logic of awareness is that, as we see above, it allows nested 

5.2.1    Implicit and explicit beliefs    123   



beliefs, which Levesque’s logic of implicit belief does not.  Fagin 
and Halpern’s logic of general awareness allows the modal operator 
Aware to apply to non-primitive propositions.  As an agent explicitly 
believes a proposition if it implicitly believes it and it is aware of it, 
we have:

E-believes(a,p) ≡ I-believes(a,p) and Aware(a,p) 
This version of explicit belief retains many of the properties of 
implicit belief, relativised to awareness.  For example, the rules and 
axioms R1, A2 and A3  in the weak S4 logic become:
 R1  necessity p and Aware(p) → 
    E-believes(p) 
 A2  distribution E-believes(p) and 
   E-believes(p → q) and
   Aware(p) → E-believes(q)

 A3  positive introspection E-believes(p) and
   Aware(E-believes(p) →  
   E-believes(E-believes(p)) 
To these general axioms, we might wish to add restrictions to provide 
desired properties of the logic.  For example, we might specify that an 
agent is unaware of (any proposition that mentioned) another agent, 
or that an agent is aware only of a certain subset of propositions.

5.2.2 Local reasoning

The restriction of an agent to only a subset of propositions can be 
elaborated to provide a logic of local reasoning which differs from 
the logic of general awareness in that it enables an agent to hold 
inconsistent beliefs.  The idea is that an agent’s belief-set may be 
partitioned into a set of clusters such that any cluster is internally 
consistent but may contradict a different one.  The idea has intuitive 
plausibility for it seems that we never use our beliefs about, say, 
nuclear reactors and football at the same time (except perhaps 
after reading this sentence).  In AI-ED, many studies have shown 
that students have difficulty because they adopt an inappropriate 
point of view on a problem, or they switch between points of view 

124    Computational Mathetics



without taking account of apparent inconsistencies between them.  
The formal idea of local reasoning is related to that of situation and 
context discussed in section 4.4.

In this logic, E-believes(a,p) is used to denote that agent a 
explicitly believes p in some ‘frame of mind’, and I-believes(a,p) 
to denote that agent a  implicitly believes p, that is, believes p if all 
its frames of mind are pooled.  This version of implicit belief satisfies 
axioms A1 and A2 of weak S4 but not axiom A3, and the version 
of explicit belief is not closed under implication and therefore not 
subject to the problem of logical omniscience.  The formula
 E-believes(a,p) and E-believes(a,p → q) 
   → not E-believes(a,q) 
is satisfiable because a might believe p in one frame of mind and p 
→ q in another but never be in a frame of mind where it puts these 
facts together.  Moreover, an agent may hold inconsistent beliefs 
because it might believe p in one frame of mind and not p in another.  
However, agents may not believe in incoherent worlds, so that   
  E-believes(a,p and not p) 
is impossible.  

As with the logic of general awareness, we may impose 
conditions to capture various properties.  For example, Fagin and 
Halpern define a ‘narrow-minded agent’ to be one who when in one 
frame of mind refuses to admit it may occasionally be in another.  
For such an agent 
 E-believes(a,(not(E-believes(a,p) and 
  E-believes(a,not p)))) 
is valid even though
 E-believes(a,p) and E-believes(a,not p) 
is consistent.  In addition, although the logic of local reasoning 
assumes an agent can do perfect reasoning within each cluster, we 
can add an awareness function to the structure for local reasoning 
to provide a model of belief which is not closed under valid 
implication.

Huang (1994) presents a version of limited reasoning which is 
intended to be more suitable for AI-ED.  He uses three modal operators, 

5.2.2    Local reasoning    125   



Attends, E-believes and I-believes.  The last two are as before: 
explicit beliefs may be inconsistent as in the logic of local reasoning, 
and implicit beliefs are closed under implication.  Attends(a,p) 
denotes that the agent a is ‘attending to’ the proposition p.  The set 
of propositions being attended to constitute a distinguished frame of 
mind, the one the agent is actually using.  This set is defined to be 
logically consistent and closed under implication, unlike awareness 
above.  These properties are captured by the following rules of 
inference and axioms
 R1  p >> Attends(p) 
 R2  p and p→q >> q 
 R3 p→q >> E-believes(p)→E-believes(q) 
 A1  p, where p is a propositional tautology 
 A2  Attends(p) and Attends(p→q) → Attends(q) 
 A3  not E-believes(false) 
 A4 Attends(p) → E-believes(p) 
 A5 E-believes(p) → I-believes(p) 
 A6  I-believes(p) and I-believes(p→q) → 
   I-believes(q) 

Imagine that we have the following ascriptions
E-believes(s,Shiny(mercury))  
E-believes(s,Liquid(mercury))  
E-believes(s,Shiny(x) → Metal(x))  
E-believes(s,Liquid(x) → not Metal(x))  

From these we cannot, using the above rules of inference, derive 
E-believes(s,Metal(mercury))  

or 
E-believes(s,not Metal(mercury))  

If we also have
Attends(s,Shiny(mercury)) 
Attends(s,Shiny(x) → Metal(x))  

that is, the student is attending to the shininess but not the liquidity 
of mercury, then we can derive (from A2)

Attends(s,Metal(mercury)) 
and (from A4)

E-believes(s,Metal(mercury)) 

126    Computational Mathetics



It should be re-emphasised at this stage that it is not the aim to 
develop from among this variety of limited reasoning mechanisms one 
which is ‘correct’.  This is an unattainable aim: some philosophical or 
computational objection can assuredly be raised against any proposed 
scheme.  Rather, the aim is to develop a general framework within 
which any such scheme can be explicitly defined and theoretically 
analysed.  In AI-ED, we usually have a limited agent (the computer 
system) reasoning about the beliefs of another limited agent (the 
student).  The problems are complex but some formalisation may 
help us avoid burying assumptions within opaque algorithms.

5.3 Nonmonotonic reasoning

If a sentence p is a valid conclusion from a set of premises PS and 
from any superset of PS then the inference process is said to be 

‘monotonic’.  Resolution in predicate logic is monotonic, because 
a derived conclusion cannot become invalidated by the adding of 
further premises.  Reasoning is nonmonotonic if the above condition 
does not hold, that is, if a conclusion derived from a set of premises 
may become invalid if further premises are added.  

The development of nonmonotonic reasoning in AI reflects the 
fact that most agents, certainly human ones, do not reason using 
the monotonic methods of standard logic.  They draw conclusions 
which they are prepared to withdraw if further evidence undermines 
the support for them.  Limited reasoning, as discussed above, is 
often nonmonotonic because relaxing the limitations often prevents 
previously-drawn conclusions from being valid, but it does not have 
to be as, for example, we can have limited reasoning using resolution.  
Nonmonotonic reasoning has also been studied in philosophy as 
defeasible reasoning, where the emphasis has been on considering 
the process of reasoning as one of constructing arguments and on 
considering how an argument may be defeated (see section 9.6).

Nonmonotonic reasoning is usually discussed with respect to a 
single agent, and we need to consider that aspect too.  Multi-agent 

5.2.2    Local reasoning    127   



reasoning in AI-ED is deeply and unavoidably nonmonotonic, for 
the following reasons:

The system’s beliefs about the student’s beliefs can never be • 
confirmed and must therefore always be considered subject 
to revision.  Even apparently objective facts such as students’ 
assertions about what they know or descriptions of students’ 
actions need to be regarded as provisional (because they may 
not fully understand terms they use, or they may make slips in 
performing tasks, for example).
Because of the ‘bandwidth problem’ systems will rarely have • 
access to sufficient data to permit reliable inferences about 
students’ beliefs, and consequently will have to make default 
assumptions which may later have to be withdrawn.
Students do occasionally learn (and forget) and therefore what • 
the system believes of the student at one time will not necessarily 
hold at a later time.
Both the system and the student will, in the cause of efficiency, • 
have recourse to nonmonotonic reasoning when reasoning on 
their own behalf about the domain.
Within AI generally, the field of nonmonotonic reasoning is vast 

and active but there has been little explicit linking to AI-ED (some 
tentative explorations are reported in Kono, Ikeda and Mizoguchi 
(1994) and Giangrandi and Tasso (1995)).  In this section, we will 
just summarise the main approaches and point out the potential 
relevance to computational mathetics.  Of course, the effect of 
nonmonotonic reasoning may be achieved through computational 
techniques (such as semantic networks) which are efficient but not 
completely understood, rather than through the use of formal systems 
which are generally intractable.  However, formal approaches to 
nonmonotonic reasoning may yield benefits in terms of clarity and 
correctness, and provide useful tools for specifying and describing 
nonmonotonic systems, in particular, for that limited class which is 
actually covered by relatively ad-hoc techniques.

128    Computational Mathetics



5.3.1 Circumscription

There are two basic approaches to nonmonotonic reasoning: model-
theoretic and proof-theoretic.  Model-theoretic approaches are 
based on the idea that anything that does not follow is assumed to 
be false (‘model’ here is used in the mathematical sense: a model 
of a theory T is any structure M such that T is true in M).  Proof-
theoretic approaches use nonstandard (nonmonotonic) logics to 
derive conclusions through inference rules.

The closed-world assumption (as used in Prolog) is the simplest 
example of a model-theoretic approach and the various formalisations 
of circumscription the most comprehensive.  Under the closed-world 
assumption, the negation of any sentence p which cannot be derived 
from a set of premises PS is assumed to be valid.  In general,  this 
assumption is too sweeping: being unable to prove something does 
not make it false.  

The closed-world assumption has certain undesirable properties 
- for example, if PS = {P(a) or P(b)} then both not P(a) and not 
P(b) follow from the assumption, giving the set 

{P(a) or P(b), not P(a), not P(b)}  
which is inconsistent.  (Prolog avoids this by not allowing disjunctive 
premises.)  In the general case, the closed-world assumption is not 
computable, as the proof of p from PS is not computable.

The basic idea of circumscription is that one considers not all 
models of T but only those which are minimal with respect to a 
specific property or predicate.  For example, if we have:
 PS  = { Metal(iron), 
   Metal(copper), 
   Metal(mercury),  
   Liquid(mercury),  
   Metal(x) and not Liquid(x) → Ductile(x) } 
to represent the belief-set of a student who believes the facts 
indicated and that metals which are not liquid are ductile, then we 
cannot logically conclude Ductile(iron) from PS, because we do 
not have not Liquid(iron) or, more generally, that the student 

5.3.1    Circumscription    129   



believes that all metals except mercury are not liquid.  Applying 
circumscription to minimize the predicate Liquid we obtain the 
extra premise:

 Liquid(x) → (x = mercury) 
using which the conclusion Ductile(iron) now follows.

Circumscription of T with respect to the predicate P, written 
Circum(T,P), is achieved by means of an axiom schema:

T(Ω) and Ɐx(Ω(x)→P(x)) → Ɐx(P(x)→Ω(x)) 
where T(Ω) is the result of replacing all occurrences of P in T by the 
predicate expression Ω, P is an n-ary relation and x abbreviates x1, 
x2, ...xn.  Informally, this states that if Ω satisfies the conditions 
satisfied by P and every n-tuple that satisfies Ω also satisfies P, then 
the only n-tuples which satisfy P are those which satisfy Ω.  

For the example above, the outcome is the same as for the closed-
world assumption.  More complex forms of circumscription have been 
defined, such as prioritised circumscription, where the predicates to 
be minimised  are placed in an order of relative importance.  This 
could be used to allow us to conclude not Ductile(mercury), 
which does not follow from Circum(PS,Liquid) as above.  The 
relationships between the various forms of circumscription have 
been the subject of many studies.

Any ascription of beliefs to a student is bound to make (implicit) 
use of some circumscription-like scheme as it would be unreasonable 
to require explicit representation of all that which the student does not 
believe.  However, formally, the matter is more complex than even 
circumscription can handle.  For example, if there is no proposition 
of the form:

B(c,B(s,p))  
then is the missing default assumption 
 not B(c,B(s,p)) 
or B(c,not B(s,p)) 

or  B(c,B(s,not p))
all of which mean subtly different things?  These four propositions 
almost correspond to the values ‘true’, ‘false’, ‘unknown’  and ‘fail’ 

130    Computational Mathetics



of the four-valued logic suggested by Ikeda and Mizoguchi (1994) 
(discussed in section 8.2.3).

5.3.2 Default logics

The application of circumscription results in further predicate 
logic expressions and therefore allows the usual theorem-proving 
mechanisms to stay unchanged.  Proof-theoretic approaches to 
nonmonotonic reasoning, on the other hand, include within the logic 
extra rules which allow nonmonotonic inferences to be drawn. For 
such logics, a new semantics must be defined.  These nonmonotonic 
logics focus on the notion of normality, that is, on rules which tend 
to apply unless there are exceptions.

For example, default logic allows a theory to contain ordinary 
sentences and defaults, which are expressions of the form

p : q  → r 
This may be read as “if p is derivable and the sentence q is consistent 
(that is, its negation is not provable) with the theory, then the default 
rule is applicable and the conclusion r may be drawn.”  This is 
nonmonotonic because a sentence q, previously consistent with a 
theory, may become inconsistent if new sentences are added to the 
theory.  The two most common forms of default are where q = r and 
where q = r and s, for example:
 Physics-graduate(s) : Knows-about-momentum(s) → 
  Knows-about-momentum(s) 
 Metal(x) : not Liquid(x) and not(x = mercury) →  
  not Liquid(x) 
(Note that although we have used the same symbol → to denote 
nonmonotonic inference as monotonic inference, they have very 
different properties.  For example, in monotonic inference if p→q 
and q→r then we can infer p→r, but this is not so for nonmonotonic 
inference: consider p='Fred is a schizophrenic', q='Fred is an adult', 
r='Fred is employed'.)

Such defaults act as rules of conjecture, allowing inferences which 
would not be possible under ordinary logic rules.  The conclusion 

5.3.1    Circumscription    131   



has the status of a belief which may need to be withdrawn if the 
assumption becomes inconsistent.  The potential circularity (arising 
from the fact that what is provable in a default logic both determines 
and is determined by what is not provable) is avoided by requiring 
that an extension of a particular theory 

contains all the known facts, 1. 
be closed under the implication rules, and 2. 
contains the consequents of all defaults which apply within that 3. 
extension.  
In general, there are many possible extensions for a given 

default theory.  Informally, an extension describes an acceptable set 
of beliefs that an agent may have about an incompletely specified 
world and therefore is similar to the concept of a possible world.  As 
determining whether a formula is within an extension is undecidable, 
the implementation of default logic seems problematic, although 
for most practical cases (such as the kinds of default illustrated 
above) implementations are possible.  For example, the LNT system 
(described in section 6.3) has an underlying default logic written in 
Prolog.

As an example, consider the following set of two default rules 
and three premises:
 PS  = { Shiny(x) : Metal(x) → Metal(x), 
     Liquid(x) : Nonmetal(x) → Nonmetal(x), 
      Shiny(mercury), 
     Liquid(mercury),  
     not(Metal(x) and Nonmetal(x)) } 
     Metal(x) and not Liquid(x) → 
     Ductile(x) } 
One extension would be to apply the first default rule in order to 
infer  Metal(mercury) which then inhibits application of the 
second default rule.  Or we could apply the second rule to infer 
Nonmetal(mercury) and so inhibit the first rule.  In this case, there 
is no basis for preferring one extension over the other (so perhaps it 
is best to infer nothing).

132    Computational Mathetics



5.3.3 Autoepistemic logics

Default logic involves an agent reflecting upon its own knowledge, 
in particular, to consider whether a proposition is consistent with 
what it believes.  It enables the expression of arguments such as 
“If I had a brother then I would know it and as I don't know it, then 
I do not have one”, which seems reasonable except for the more 
lurid soap operas.  The notion of consistency is, however, outside 
the language of default logic.  We could instead attempt to capture 
the notion within the logic, as is done in an autoepistemic logic.  For 
example, we could rephrase:

p : q  → r 
by the sentence:

B(a,p) and not Infer(a,not q)  → B(a,r) 
that is, “if p belongs to the agent’s belief-set and not q does not 
follow from it, then r is believed.”  Not surprisingly, given this 
translation, various formal equivalences between variations of 
default logic and autoepistemic logic can be established (Konolige, 
1988; Lin and Shoham, 1992).  

The specific version:
not Infer(a,p)  → B(a,not p) 

is a kind of extension of the introspection axioms of modal logics, 
involving the meta-level predicate Infer, to be considered in 
chapter 6.  In general, an autoepistemic logic enables an agent to 
make inferences on the basis of its own knowledge or beliefs (or 
ignorance).  The main point here, however, is that we have a link 
through modal logics of belief to other aspects such as limited 
reasoning, as discussed above, and a prospect of being able to tie 
together all the threads, in due course.

Unfortunately, as discussed by Levesque (1990), this link is 
weakened by the fact that work on autoepistemic logics and default 
logics has defined different semantics for the notion of belief to that 
used in belief logics.  Levesque attempts to overcome this by defining 
a second modal operator, in addition to Believes, namely Only-

5.3.3    Autoepistemic logics    133   



believes, such that Only-believes(a,p) is to be read as “p is all 
that is believed by a” or perhaps “only p is believed by a”, and then 
by developing a semantics for a language with two such operators.  
Subsequently, this operator is modified to Only-believes(a,p,n) 
for “only p is believed by a about n”, just as circumscription takes 
place with respect to a predicate and not the whole belief-set.

5.3.4 Multi-agent nonmonotonic reasoning

Almost all the work on nonmonotonic reasoning has considered only 
the single-agent case.  As Lakemeyer (1993) remarks, “This focus 
on single agents is somewhat surprising, since there is little doubt 
that agents, who have been invested with nonmonotonic reasoning 
mechanisms, should be able to reason about other agents and their 
ability to reason nonmonotonically as well.”  AI researchers illustrate 
their ideas with artificial problems involving Jack, Jill, birds and 
penguins but multi-agent nonmonotonic reasoning arises naturally 
in AI-ED, where we have at least two agents (program and student) 
reasoning nonmonotonically about one another.

Lakemeyer presents an axiomatization of multi-agent 
nonmonotonic reasoning based on Levesque’s ‘only logic’, mentioned 
above.  An example can be re-expressed in AI-ED terms.  Let a 
computer program c believe T and suppose c makes the following 
assumption: unless I believe that a student s believes T assume that s 
does not believe it.  Then if this assumption is all that c believes then 
it indeed believes that s does not believe T.  Formally,
 Only-believes(c,(not B(c,B(s,T)) → not B(s,T)))  
   → B(c,not B(s,T)) 
is derivable from the axioms of the logic.  The complex technical 
machinery apparently needed to derive such an intuitively obvious 
conclusion is perhaps a warning to AI-ED that ad-hoc mechanisms 
are likely to have theoretical shortcomings.

Clearly, difficult technical issues remain and most work in 
this area continues to focus on the detailed properties of different 

134    Computational Mathetics



formalisations rather than on considering possible applications 
to areas such as AI-ED.  However, some general implications for 
computational mathetics may be listed:

Although some formalisations are theoretically intractable, • 
practical implementations for realistic applications are possible 
and are beginning to be developed (Donini et al, 1990).  The 
original motivation for nonmonotonic reasoning, to enable agents 
to jump to conclusions, that is, to reason faster, has yet to be 
satisfied by the rather complex formalisations so far developed. 
As nonmonotonicity often arises through an agent reasoning about • 
its (or other’s) beliefs, the meaning of the belief operator depends 
on the context (that is, the other beliefs).  Believes functions as 
an indexical and expressions should ideally be indexed.  Formally, 
this is an aspect which has not been considered much.
Nonmonotonicity is intimately related with other aspects of • 
computational mathetics.  For example, determining which 
belief(s) to withdraw (section 7.2.4) is likely to depend to some 
extent on which beliefs were derived by ordinary inferences and 
which by defaults.  Similarly, limited reasoning may be achieved 
by not reflecting too deeply about a set of beliefs but by deriving 
default assumptions.
We can use logical notations to describe nonmonotonic reasoning • 
without making any psychological claims.
To repeat a general point, formal characterisations of nonmonotonic • 
reasoning begin to provide us with a way of precisely describing 
and analysing aspects of AI-ED which at present are proposed, 
described and implemented in an ad-hoc manner.

5.4 Reasoning with inconsistent knowledge

The previous section considered the problem of deriving a 
possibly unreliable conclusion from a set PS of premises, 

assumed reliable.  Alternatively (or perhaps as well), we could view 
the problem as one of deriving a reliable conclusion from a possibly 

5.3.4    Multi-agent nonmonotonic reasoning    135   



unreliable set of assumptions, assumed true until a contradiction is 
detected.  In AI-ED, for example, our sources of information are not 
fully reliable.  Our beliefs about a student derive from statements 
of the student, analysis of her problem-solving (complicated by the 
presence of slips), and perhaps from a teacher.  Even experts do not 
always agree.  Therefore, it is quite likely that a realistic PS will be 
potentially inconsistent.  In ordinary logic  any conclusion follows 
from inconsistent premises.

Roos (1992) describes a logic for reasoning with inconsistent 
knowledge, whose basic idea is quite simple and can be illustrated 
by adapting the example from section 5.3.2, with four assumptions:
 PS  = { 1. Shiny(x) → Metal(x), 
     2. Liquid(x) → not Metal(x), 
      3. Shiny(mercury), 
     4. Liquid(mercury), } 
from which we can derive Metal(mercury) (from 1 and 3) and not 
Metal(mercury) (from 2 and 4), which is contradictory.  To restore 
consistency, one of the assumptions has to be rejected (in this case, 
any of the four could be rejected).  To enable an assumption to be 
selected, a ‘reliability relation’ < is defined, so that (in the simplest 
case) the least reliable assumption is rejected.  Here, we might have 
1<2<3<4, in which case assumption 1 will be rejected and we will 
conclude not Metal(mercury).

In hypothetical or counterfactual reasoning an agent proceeds 
by making an assumption believed to be false - in the above terms, 
it is given a low reliability.  Then when, as hoped, a contradiction is 
derived the least reliable assumption is rejected as false, as originally 
intended.  In general, it is necessary to consider how the reliability 
of a derivation depends on the reliability of its assumptions (it may 
not always be best simply to discard the weakest link).  Also, as 
the retained assumptions are still only assumptions they may later 
be rejected - in which case, it may be advisable to reinstate an 
assumption previously rejected for being less reliable (for example, 
if we later reject assumption 2 then maybe 1 should be reinstated).  
This is a standard concern in belief revision.

136    Computational Mathetics



5.5 Probabilistic reasoning 

The idea of a reliability relation naturally suggests associating with 
each sentence a number which is a measure of the ‘reliability’ 

of that sentence.  Similarly, the various approaches to nonmonotonic 
logic seem to have some statistical basis.  For example, the default 
assumption “Metals shine” seems to be related to the empirical 
fact that the large majority, say 99%, of metals actually do shine.  
However, nonmonotonic logicians have insisted that, in situations 
where nonmonotonic reasoning is necessary, “statistical reasoning 
has no part to play whatsoever” (Reiter, 1987a).  These situations 
are apparently ones in which the default assumption captures some 
communicative convention to the effect that, in this case, whenever 
a metal is mentioned, unless something explicitly to the contrary 
is stated, we are expected (or required) to infer that it shines.  In 
nonmonotonic reasoning, when an agent believes something 
(whether by default assumption or not) it believes it totally, even 
though it might need to be retracted later.

Still, such a convention is unlikely to be adopted if it flouted 
statistical reality and there are certainly other contexts where it 
appears to be necessary to reason directly about the statistical 
likelihood or probability of sentences.  Historically, AI has been very 
reluctant to approve the use of numbers for probabilistic reasoning.  
AI was conceived with the realisation that computers could process 
complex, ‘meaningful’, symbolic structures, not just numbers: it 
seems a retrograde step to resort to the latter.  The AI-ED field has 
been less reluctant, as education itself is fixated with the need to 
provide numbers.  Overall, though, the desirability of using numbers 
in reasoning remains controversial.

Intuitively, it seems that we attach a ‘degree of strength’ to our 
beliefs.  I am quite sure that Beethoven wrote Fidelio and less sure 
that he wrote Die Zauberflöte.  I am even less sure that he wrote 
both.  If pushed, I could attach numbers to my confidence: I am 
90% sure that Beethoven wrote Fidelio, and so on.  First, we have to 

5.5    Probabilistic reasoning    137   



consider how to represent such statements.  Attaching a probability 
to each sentence:

Composer(Fidelio,Beethoven,0.9) 
is not adequate: where would we put the number in a sentence such 
as Shiny(x) → Metal(x)?  We seem to need something like:

Prob(Shiny(x) → Metal(x),0.7) 
where Prob is a modal operator, as it takes a sentence as a term.  
Like other modal operators, Prob would be referentially opaque.  
However, because the probability of a sentence is not an objective 
characteristic of that sentence but a property associated with it by 
an agent, we can perhaps dispense with Prob and simply extend the 
Believes operator:

Believes(a,Shiny(x) → Metal(x),0.7) 
As before, we can nest such expressions:

B(c,B(s,Shiny(x) → Metal(x),0.7),0.95) 
Here, the program is very confident (0.95) that the student is fairly 
sure (0.7) that shiny things are metals.  Sometimes we may prefer to 
specify a range rather than a precise number: 

Believes(a,Shiny(x) → Metal(x),[0.7,1]) 
The basic approach of probabilistic reasoning is to define how 

the probability of composite sentences depends on the probabilities 
of its constituent sentences, just as the truth value of an ordinary 
predicate logic sentence is defined (section 4.2).  Predicate logic 
can be regarded as a special case of probabilistic logic where all 
probabilities are 0 or 1.  Unfortunately, as we should suspect from 
the general discussion of modal logics in section 4.3, the probability 
of S and T does not depend only on the probabilities of S and T.  For 
example, if we have

B(a,Short(Fred),0.3) 
B(a,Policeman(Fred),0.05) 

then we cannot calculate the probability p such that
B(a,Short(Fred) and Policeman(Fred),p) 

without knowing what a believes about the joint occurrence of being 
short and a policeman.

138    Computational Mathetics



Most schemes for carrying out probabilistic reasoning therefore 
proceed by defining axioms for calculating probability-like measures.  
The field is large and contentious, as intuitions about probability are 
difficult to pin down.  We will briefly mention three examples:

The MYCIN expert system (Shortliffe, 1976) uses ‘certainty • 
factors’ ranging from -1 to +1 rather than probabilities and 
combination rules such as:
CF(S and T) ≡ minimum(CF(S),CF(T)) 
CF(T) ≡ CF(S) x CF(S → T) 

Probabilistic logic (Nilsson, 1986) uses bounds on probabilities • 
because in general that is all that can be calculated given 
probabilities of constituent sentences.  However, if the bounds of 
p and q are [0.5,1] then the bounds of p and q would be [0,1], 
as it would if the original bounds were [0,1] - thus, the likely 
distribution of the probability is not captured.
Fuzzy logic (Zadeh, 1987) differentiates between probability and • 
the gradual membership of a set.  For example, we may say that 
the probability that it will be sunny tomorrow is 0.4 and that today 
is to a greater or lesser extent a member of the set of the sunny 
days.  Most concepts, it is argued, do not correspond to relations 
which map constants onto the values true or false but have vaguely 
defined boundaries.  Fuzzy logic defines ways of determining the 
degree of membership for composite concepts.

These and many other schemes are supported by comprehensive 
theories which should clarify when each scheme is appropriate, for 
the choice between them is not arbitrary, as they provide different 
conclusions.

In AI-ED, we find, as usual, that the terms are sometimes adopted 
but rarely the theories that go with them.  For example, Derry and 
Hawkes (1993a) use ‘informal fuzzy reasoning’ to represent how 
a student solves algebra word problems.  The degree to which a 
student’s solution attempt has a particular feature is indicated by 
a number 0, 1/6, 1/3, 1/2, 2/3, 5/6 or 1, given a linguistic gloss as 
{definitely not x, not x, rather not x, neither x or not 
x, rather x, x, definitely x}.  

5.5    Probabilistic reasoning    139   



Similarly, Katz, Lesgold, Eggan and Gordin (1994) represent the 
degree to which a student possesses a skill or concept by using a 
‘fuzzy variable’ which can take one of the values {no knowledge, 
limited knowledge, unautomated knowledge, partially 
automated knowledge, fully developed knowledge}.  More 
precisely, a probability is assigned to each of these five values.  For 
example, the student’s ability to use a handheld meter might be 
represented by the vector (0, 0, 0.3, 0.5, 0.2).  The vector for a global 
skill (such as test equipment usage) is determined by a weighted 
polynomial of the vectors representing its component skills (such as 
the ability to use the oscilloscope, digital multimeter, and so on).  The 
properties and benefits of such schemes are not formally stated.

5.5.1 Bayesian networks

Naturally, in the face of all these somewhat ad-hoc proposals, there 
has been a vigorous rearguard action from those familiar with long-
established probability theory.  Its current adaptation, Bayesian 
networks, has become more than a rearguard: it is now the standard 
approach to uncertain reasoning (Pearl, 1988; Charniak, 1991).  
Bayesian networks are based on the familiar Bayes’ law:

Prob(p|q) = Prob(p) * Prob(q|p) / Prob(q) 
where Prob(p|q) is the probability of p given that q holds.  This 
follows immediately from the axiom that

Prob(p and q) = Prob(p) * Prob(q|p)  
 = Prob(q) * Prob(p|q) 

In passing, we note that we can use this notation to express default 
rules that may be overridden:

Prob(not Liquid(x)|Metal(x)) = high 
Prob(not Liquid(x)|Metal(x), x=mercury) = low 

In fact, standard probabilistic reasoning is nonmonotonic in the 
sense that it may deliver different probabilities as new evidence is 
acquired.

AI and AI-ED differ from the kinds of context in which classical 
probability theory is usually applied in that they are not concerned 

140    Computational Mathetics



with events (such as coin tossing) which are repeatable and about 
which statistics may be gathered.  In AI-ED we are unlikely to 
estimate the probability that a student will answer a particular 
problem correctly by asking her to solve that same problem 100 
times.  Instead, we have to use ‘subjective probabilities’, that is, 
estimates of probabilities based on (unreliable) evidence.  This, 
together with the fact that very large numbers of such estimates have 
to be made to tackle realistic problems, causes some to doubt the 
usefulness of probabilistic approaches.  Also, it is hard to ensure that 
such probability estimates are consistent with one another.

This last shortcoming of classical probability is overcome 
with Bayesian networks, which are guaranteed to be consistent.  A 
Bayesian network is a directed acyclic graph, a simple example of 
which is shown in Figure 5.1.  The nodes are variables representing 
states of affairs and taking the values true or false, in the simplest 
case.  The link points from a ‘cause’ to an ‘effect’.  For example, 
the state of affairs of a student being able to subtract (sub) causes 
the state of affairs where a student can solve a particular problem 
(ssub).  The causal connections are not intended to be complete - for 
example, a student may be able to subtract and multiply and still not 
be able to long-divide.  

 A Bayesian network can be used both to predict (for example, 
whether a student will be able to solve a long-division problem) 

  

Can-subtract (sub)

Can-multiply(mult)

Can-solve 508-253 (ssub)

Can-long-divide (ld) Can-solve 5108/253 (sld)
Prob(sub)=.8

Prob(mult)=.7

Prob(ssub|sub)=.95 
Prob(ssub|~sub)=.01

Prob(ld|sub,mult)=.6 
Prob(ld|sub,~mult)=.1 
Prob(ld|~sub,mult)=.05 
Prob(ld|~sub,~mult)=.01

Prob(sld|ld)=0.9 
Prob(sld|~ld)=0.001

 

 

Figure 5.1.  A simple Bayesian network

5.5.1    Bayesian networks    141   



and to diagnose (for example, to determine the probabilities of the 
student being able to subtract and multiply after observing that she 
has failed to solve a long-division problem ).  This is an advantage 
over logic-based methods, where it is sometimes necessary to have 
rules in both directions, for example, we have used both the rules: 
Metal(x) → Shine(x) and Shine(x) → Metal(x).

A Bayesian network must be initialised with relevant a priori 
probabilities of the root nodes and the conditional probabilities of 
their successors (as shown in Figure 5.1: for example, the probability 
that the student will solve the given subtraction problem even if they 
cannot subtract is .01 - a guess, presumably).  The structure of the 
network specifies which states of affairs are directly causally related 
to others, and therefore, by omission, which states are independent 
of one another and hence for which conditional probabilities do not 
need to be specified.  For example, being able to multiply (mult) is 
not directly related to ssub and so Prob(ssub|mult) is not needed.

As evidence is acquired that, say, a student can solve the 
subtraction problem but not the long-division one, then probabilities 
associated with the adjacent nodes can be recalculated and so new 
values propagated through the network.  The algorithm is based on 
Bayes’ theorem and is given in full in Pearl (1988), along with a 
thorough analysis.  The general algorithm for arbitrarily complex 
graphs is intractable, but efficient methods exist for simply connected 
graphs and various approximate methods have been devised for 
others.

Proposals and preliminary attempts to apply Bayesian networks 
to AI-ED are described by Villano (1992), Sime (1993) and Katz, 
Lesgold, Eggan and Gordin (1994).

5.6 Qualitative reasoning

As Pearl (1988) remarks, “Although probabilities are expressed 
in numbers, the merit of probability calculus rests in providing 

a means for articulating and manipulating qualitative relationships 

142    Computational Mathetics



that are found useful in normal discourse.”  As we saw in the previous 
section, some researchers prefer to attach qualitative labels (such as 
rather and definitely) to points or ranges on the probability scale.  
It is a natural step to define reasoning schema which deal directly 
with such qualitative labels: “if she knows very little about x, then 
she will almost certainly be unable to solve problem y”; “if we run 
faster in the rain, then we get less wet”, and so on.

Qualitative reasoning is important in AI-ED for two main reasons.  
First, qualitative reasoning is an integral part of expert problem-
solving.  It is not just that students, who do not know the quantitative 
formulae emphasised in school curricula, have to resort to qualitative 
reasoning during an unfortunate, preliminary stage before they learn 
‘better’; it is more to the point that experts use qualitative reasoning 
both before and during problem-solving in order to determine 
what kind of quantitative analysis is appropriate and whether it is 
proceeding satisfactorily.  Therefore, even in apparently quantitative 
domains like physics and maths, students need to develop abilities in 
qualitative reasoning and AI-ED systems need to perform qualitative 
reasoning in order to provide comprehensible explanations and to 
diagnose students’ problem-solving behaviour.

The second main reason derives from the fact that many AI-
ED systems are based on simulations of some quantitative process.  
These simulations are often very complex software systems, which 
perhaps existed before an AI-ED system was built around them.  
Students cannot be expected to be able to understand the detailed 
calculations carried out by such simulations: they need more 
qualitative explanations to be provided.  Of course, it is difficult for 
a system to integrate and coordinate the quantitative and qualitative 
aspects of such simulations.

The field of qualitative reasoning in AI, which was initiated by 
limitations of the SOPHIE tutoring system (de Kleer and Brown, 
1981), has been almost entirely concerned with reasoning about the 
physical world.  Qualitative reasoning is even more prevalent in some 
of the social sciences, where quantitative theories are less developed 

5.6    Qualitative reasoning    143   



- for example, in economics (“if inflation rises, then unemployment 
increases”) and sociology (“if unemployment rises, then crime 
increases”) - but so far AI’s qualitative reasoning techniques have 
not been applied much to these domains.

Unlike the field of nonmonotonic reasoning, where most of the 
research effort goes on making detailed comparisons of the various 
proposals, in qualitative reasoning the different approaches seem to 
be pursued in parallel and it is quite difficult to determine exactly how 
they relate to one another and what their particular benefits are.  Even 
a superficial review would be too comprehensive for our purposes 
(the original papers describing the main methods are de Kleer and 
Brown (1984), Forbus (1984) and Kuipers (1986); Bredeweg and 
Winkels (1994) gives a brief summary of these methods; Weld and 
de Kleer (1989) is a collection of papers on qualitative reasoning).  
For illustrative purposes, we will simply give a short summary of 
Qualitative Process (QP) theory, selected because it is the only one 
of the main theories which its developer is attempting to apply to 
AI-ED (Forbus, 1991).

QP theory focusses on the processes in a system (for example, 
the flow of heat from one place to another), rather than, say, its 
physical components.  A process is said to be active (or not) in a 
situation.  For a process to be active certain preconditions have to 
hold, as indicated by this rule:
 Holds(connected(x,y),t) and 
 Value(temp(x),t)>Value(temp(y),t) →  
  Ǝp Process(p,heat-flow(x,y)) and Active(p,t) 
A process influences parameters of the system, for example, heat 
flow from x to y changes the amount of heat of x and y:
 Token(p,heat-flow(x,y)) and Active(p,t) → 
  Value(influence(p,heat(x),t)<0 and 
  Value(influence(p,heat(y),t)>0 
Some parameters are directly influenced by processes, others only 
indirectly (through other parameters).  For example, the temperature 
of a body is related to the heat it contains.  In QP theory such relations 
are expressed as qualitative proportionalities: R1 α R2 means that, 

144    Computational Mathetics



other things being equal, an increase in R1 will cause an increase in 
R2.  For example,

temperature(x) α heat(x) 
(compare the naive mental models of heat and temperature outlined 
in section 4.6).

From the description of processes a system’s behaviour from an 
initial state can be predicted.  The applicable processes and their 
influences are determined, and these are propagated through the 
system, giving a new situation, and so on, until no further changes 
occur.  QP theory is being applied to develop ‘self-explanatory 
simulations’ (Forbus, 1991) which combine qualitative and 
quantitative representations to generate predictions and explanations 
of a system’s behaviour.  The aim is to enable such simulators to 
be built automatically by expressing the relevant domain theory 
in the QP language.  Then explanations would follow from the QP 
interpretation, in terms of the causal links between processes and 
influences.

Other applications of qualitative reasoning to AI-ED include:
The QUEST system (White and Frederiksen, 1990), mentioned • 
in section 2.2.3, where the main emphasis is on the student’s 
progression through a series of domain models (from qualitative 
to quantitative) by the judicious choice of problems to avoid the 
development of misconceptions.
The QMaPs theory (Van Joolingen, 1995), in which a system is • 
described by specifying relations or constraints that hold between 
system parameters.  For example, a water tank with a constant 
inflow and an outflow that monotonically increases with the water 
level would be described by the following relations:
deriv(level,time,netflow) 
sum(netflow,outflow,inflow) 
constant(level,inflow) 
M+(level,outflow) 

As with QP theory, such descriptions form runnable models which 
can generate explanations and predictions and be integrated with 
quantitative processes.

5.6    Qualitative reasoning    145   



The Sepia system (Ploetzner, 1995), which emphasises • 
the complementary roles of quantitative and qualitative 
representations.  The qualitative knowledge that when there is a 
non-massless body on a plane then there is a normal force on the 
body due to the plane is written in Sepia’s notation (simplifying 
a little) as:

 Instance(x,body) and not Massless(x) and 
  Instance(y,plane) and On(x,y) → 
   Instance(force(x,y,fn),normal-force) 

However, in a pattern that is becoming familiar, these beguiling 
new notations are not precisely defined and related to the longer-
established qualitative reasoning theories developed in mainstream 
AI.  It is not clear why the established theories are considered 
inadequate for AI-ED purposes and what benefits the new notations 
provide.

5.7 Reasoning about time and action

Methods for qualitative reasoning such as QP theory ‘quantise’ 
time by assuming that during a process the system passes 

through qualitatively identical states.  This is inadequate if it is 
necessary to regard time as continuous, for example, to reason about 
the duration of processes or about whether one event happens before 
or after another.  It is also inadequate if there are actions, external to 
the system, which might affect predicted outcomes.

The first problem has led to the development of temporal logics 
and the field of temporal reasoning.  In this case, it is not clear 
that temporal reasoning has specific relevance to AI-ED (except in 
domains where students have to reason about when something will 
happen, for example, in medical diagnosis, to determine when a drug 
should be administered).  Therefore, we will content ourselves with 
referring the reader to a review of temporal reasoning methods (Vila, 
1994) and commenting that the standard methods use techniques 
with which we have become familiar:

146    Computational Mathetics



The use of extra terms in predicate logic expressions to indicate • 
the time or period when a term holds:
Composed(Fidelio,Beethoven,1805) 

As with other special terms like situations and probabilities, a 
difficulty is that the terms are not special at all syntactically and 
therefore nonsensical expressions can easily be written.
The reification of temporal terms:• 
Holds(composed(Fidelio,Beethoven),1805) 

with the advantage mentioned before that it is possible to predicate 
and quantify over such terms.
The introduction of further modal operators:• 
Was(Composer(Fidelio,Beethoven)) 

As before, for each temporal operator introduced, a semantics has 
to be defned.
The second problem is of more obvious relevance to AI-ED 

because we have agents performing actions intended to effect 
predicted outcomes. Qualitative reasoning assumes that events 
will unfold ‘uneventfully’ to the predicted conclusion, but we have 
agents whose aim is to change this predicted course of events.  AI-
ED systems only function in contexts where predictions indicate 
that some action is needed, for example, something has not yet been 
learned. (Interestingly, young children’s qualitative reasoning is 
more in terms of agents performing actions to affect the state of the 
world than in terms of events unfolding naturally.  For example, when 
asked about the wind, they might say that it is caused by the trees 
waving at us.  Adults continue to be inclined to attribute otherwise 
mysterious events to the actions of hidden agents.)

The standard approach to dealing with actions, based on 
the situation calculus, was introduced in section 4.4 and will be 
discussed further in later chapters.  For the moment we just point 
out the relationship of the notorious frame problem to nonmonotonic 
reasoning.  Previously (section 4.4), we had a rule:

not Holds(knows(s,P),t) →  
 Holds(knows(s,P),tell(teacher,s,P,t)) 

5.7    Reasoning about time and action    147   



The frame problem concerns the difficulty of inferences such as:
Holds(knows(s,Q),t) →  
 Holds(knows(s,Q),tell(teacher,s,P,t)) 

that is, that a student continues to know what she knew (Q) before a 
teacher tells her something else (P).  

Common sense suggests that almost all of an agent’s knowledge 
and beliefs carries over from one situation to another.  Of course, it 
is impractical to list explicitly all the knowledge and beliefs which 
persist - an agent makes default assumptions that they do:

Holds(p,t) and not Abnormal(action,p,t) →  
 Holds(p,action(t)) 

that is, if p holds in situation t and there is nothing abnormal about 
an action then p will continue to hold in situation action(t).  For 
example, in the case of belief, an abnormal action could be one which 
leads the agent to hold a contradictory belief.  Similarly, we assume 
that the absence of a belief persists by default: if an agent does not 
believe something in a certain situation then it will only come to 
believe it through some abnormal action (for example, one which 
causes it to learn it).  Needless to say, the frame problem continues 
to be a source of great theoretical and practical difficulty (Ford and 
Hayes, 1991).

5.8 Diagrammatic reasoning

So far in this chapter it has been argued that computational 
mathetics will need to capitalise on various areas of mainstream 

AI (nonmonotonic reasoning, probabilistic reasoning, qualitative 
reasoning, and so on) which have been relatively neglected in AI-
ED.  Although these areas still have many open problems and have 
not yet addressed some aspects which computational mathetics 
needs, a promising degree of theoretical consensus has been 
developed.  Inevitably, though, computational mathetics will need 
more than AI has yet been able to provide a foundation for.  One 
such topic concerns an agent’s ability to reason with diagrams, 

148    Computational Mathetics



icons, figures, maps, graphs, illustrations, pictures, and so on, which 
we will call diagrammatic reasoning.  With the increased use of 
graphical interfaces and multimedia in AI-ED systems, the role of 
diagrammatic reasoning is becoming much more important.

Philosophers and psychologists have long been interested in the 
nature of mental imagery but in AI consideration of diagrammatic 
reasoning has been relatively neglected compared to the symbolic, 
logicist view of reasoning.  An obvious difficulty is indicated by 
the fact that the various kinds of diagrams are often referred to as 
‘external representations’, that is, they are external to a computer 
system which therefore has no satisfactory internal representation of 
them.  To be sure, any diagram can be represented in, say, predicate 
logic, but a system’s facility in reasoning with those representations 
scarcely matches that of human ability at diagrammatic reasoning 
(whatever that means, precisely).

Diagrammatic reasoning is rich and ubiquitous.  It ranges from 
the use of simple conventions (for example, that the length of a line 
represents the duration of some activity, or that things tend to ‘flow’ 
from top to bottom or left to right of a page) to the use of complex, 
special-purpose diagrams (for example, circuit diagrams for 
equipment, visual programs, and architectural drawings).  Moreover, 
current computer systems, with their capability for animation, user-
controlled zooming, annotated overlays, and so on, provide much 
more than the equivalent of a drawing.

At this stage, it is not clear to what extent an AI-ED system 
will need itself to have some facility at diagrammatic reasoning.  It 
is possible that it will be sufficient for AI-ED system designers to 
be so well-versed in the properties of diagrammatic reasoning that 
they will be able to design systems which catalyse in the student 
precisely those diagrammatic reasoning abilities which are needed.  
This seems rather optimistic for various reasons:  

Diagrammatic reasoning ability is not entirely innate; it is largely • 
a learned ability.  Students, being students, may not yet have 
learned the requisite ability.  For example, a student trying to 

5.8    Diagrammatic reasoning    149   



solve an optimisation problem using PERT networks may have 
difficulty through misinterpreting the semantics of the diagram, 
rather than through misunderstanding the problem itself.  An AI-
ED system which aimed to give advice to such a student could 
hardly do so without itself being able to monitor diagrammatic 
reasoning performance.  
As there are individual differences in students’ diagrammatic • 
reasoning ability, it is likely to be necessary for systems to be able 
to dynamically generate appropriate diagrams rather than simply 
present pre-specified ones.  
If a student is not merely to ‘receive’ a diagram from a system • 
but is to be actively engaged in constructing her own diagrams 
(as constructivists would prefer, despite the fact that at present 
many of them are engaged in designing presentational multimedia 
systems) then it seems likely to be beneficial if the system could 
itself understand, or reason with, those diagrams.  
Diagrams differ greatly in their appropriateness for a particular • 
problem.  A system ought to be able to detect when a student has 
adopted an inappropriate diagram and to give some explanation 
of why it is inappropriate.
These arguments echo the general ones for the use of explicit 

representations in AI-ED.  It is much too early to say whether they will 
be adequately achievable in the case of diagrammatic reasoning.  At 
the moment, only speculative comments on how diagrams facilitate 
reasoning and problem-solving are possible.

The most patent and potent characteristic is that diagrams 
directly indicate certain relations (such as proximity and relative 
size) so that inferences involving those relations are so immediate 
that they barely seem like inferences.  Which relations are ‘directly 
indicated’ must be learned - for example, of the three complex 
diagrams mentioned above, relative size is important in architectural 
drawings, but much less so in visual programs or circuit diagrams.  
Diagrammatic reasoning may involve re-drawing the diagram and 
adding symbolic annotations.  The latter indicates that an adequate 

150    Computational Mathetics



description of diagrammatic reasoning must explain how it is 
integrated with symbolic reasoning (as usual, there is no hard-and-
fast distinction to be drawn).

Diagrammatic reasoning can be used for problems which are not 
intrinsically spatial.  One may solve a problem expressed in natural 
language by representing the problem statement as, for example, 
Venn diagrams, then manipulating the diagrams, and converting the 
‘answer representation’ back into natural language.  In general, then, 
the process involves adopting some diagrammatic representation 
which can be reasoned with much more easily than the original 
representation.  The relevant non-visual relations of the problem 
statement need to be mapped onto directly indicated relations in the 
diagram (such as membership in the case of Venn diagrams).

The reasoning steps carried out during diagrammatic reasoning 
may or may not be comparable with those which might be carried 
out in the original or any other representation.  For example, a Venn 
diagram proof may differ from a predicate logic one.  It may be that 
there are certain kinds of symbolic reasoning process which it is 
considered important for a student to master and for which we can 
try to design analogous diagrammatic reasoning processes which are 
relatively simple for a student to understand.  This is the motivation 
for what Merrill and Reiser (1994) call ‘reasoning-congruent’ 
learning environments.  

Other systems (for example, the Geometry tutor (Anderson, 
Boyle and Yost, 1985); AlgebraLand (Foss, 1987); BRIDGE (Bonar 
and Cunningham, 1988)) have used proof-like diagrams to enable 
students to plan and monitor their own problem-solving.  The main 
aim of reasoning-congruent environments is to provide the student 
with access to the invisible behaviour of the objects of reasoning.  
To this end, six principles are identified which we can add to the 
catalogue presented in section 3.5 and which serve as a further 
challenge to computational mathetics:

Make students’ own reasoning explicit by having them make • 
predictions of behaviour.

5.8    Diagrammatic reasoning    151   



Render behaviour visible by allowing student to access normally • 
invisible states.
Minimize the translation process from the students’ internal • 
plans to the external representation of the solution.
Have the structure of a partial solution remind the students of • 
where they are in their solution plan and the search space of the 
domain.
Allow students to focus on subproblems on the way to solving • 
the entire problem, thereby avoiding premature commitment and 
exploiting independence of subgoals.
Proactively guide problem-solving by encouraging students to • 
use a more profitable set of tools for solving problems.

In practice, the principles are illustrated by the GIL system (Merrill 
and Reiser, 1994), with which students build representations of a 
Lisp program by connecting icons representing program constructs 
in a graph, rather than a text-based representation .

AI-ED systems that allow students to develop graphical 
representations on screen do so by providing a palette of icons 
which can be put together in restricted ways.  Cox and Brna (1995) 
consider the extent to which a system may help a student construct 
and use their own representations, bearing in mind that students are 
liable to invent idiosyncratic notations with unfathomable or non-
existent semantics.  They identify four stages during which a system 
may be able to provide assistance:

Problem comprehension.  Student diagrams are often • 
prematurely constructed and reveal an inadequate understanding 
of the problem statement.
Representation selection.  A good diagram represents not only • 
the problem but also facilitates the reasoning necessary to solve 
it.  Students may be unable to predict whether their selected 
method achieves this.
Diagram construction.  Students may need help in ensuring • 
that all relevant information is expressed in the diagram, or in 
switching to an alternative representation if necessary.

152    Computational Mathetics



Diagram use.  A system should be able to check whether a • 
student’s reasoning and answer are consistent with her diagram.

Of course, as usual, it is a separate pedagogic decision as to whether 
a system should actually make interventions such as these.

5.9 Distributed reasoning

According to Shoham (1993), agent-oriented programming 
“promotes a societal view of computation, in which multiple 

agents interact with one another” but so far in this chapter we have 
imagined an agent reasoning in isolation from other agents.  Recently 
in AI-ED there has been more emphasis on the possible benefits of 
various kinds of collaborative problem-solving and learning and 
therefore we should consider ‘distributed reasoning’, where two or 
more agents reason together to solve a problems.

To be concrete, let us imagine two possible scenarios.  In the first 
scenario (student-program-student) we have two students working 
together, using an intermediary program, to solve some problem.  
We would need to disambiguate the word ‘together’: does this mean 
physically (side-by-side) or conceptually (apart, but communicating 
via the program)?  The role of the program is also crucial - is it 
merely a conduit for communication, is it the focus for problem-
solving, or does it play some constructive part in facilitating the 
collaboration?

In the second scenario (student-program-program) we have one 
student working with a program to solve some problem, this program 
genuinely collaborating with the student, with a second program 
playing any of the roles indicated for the first scenario.  Obviously, 
we can have more students and programs, but these two scenarios 
capture the essential features of distributed reasoning in AI-ED, 
namely: that different agents may well have different goals and will 
have incomplete knowledge of other agents’ goals; that there may be 
variable scope for independent action by any agent; and that different 
kinds of communication between agents are necessary.

5.8    Diagrammatic reasoning    153   



Most of the relevant work has been carried out in the field of 
distributed AI, another burgeoning field of AI, with many applications 
but few yet to AI-ED.  The main reasons why distributed AI has 
become important, and how these relate to AI-ED, can be summarised 
as follows:

The advent of multi-processor systems and fast computer networks • 
makes it necessary to consider how computation may be distributed.  
In AI-ED, it is now possible to consider students working together 
at a distance, synchronously or asynchronously.
Distributed problem-solving may improve reliability, as • 
components may duplicate or provide extra functions.  Group 
problem-solving is likely to be more efficient than individual 
problem-solving, because individuals may bring to bear different 
expertise and perspectives.  A problem may be solved even though 
no one individual has sufficient competence to solve it alone.  This 
is not so obviously as beneficial in AI-ED as it is in distributed AI, 
for in AI-ED the specific problem is incidental.  The aim is rather 
for each student to develop general problem-solving expertise and 
this may be inhibited if a colleague contributes too much.
Some problems simply cannot be solved in isolation: they demand • 
working with others (and some argue that most real-life problems 
are of this kind).  For example, a flight simulator may help train 
an individual pilot but in reality a pilot’s skills involve working 
with co-pilots, navigators, and air traffic controllers.
Sometimes it is necessary to consider a group of agents as a • 
‘community’ with its own goals, different from and not some 
kind of union of the individual goals.  Each individual agent may 
be unaware of the community goals.  For example, a university 
composed of students and teachers all with their own goals might 
be considered to be a community with its own goals.  Overall, 
the objective might be to meet the goals of the community, rather 
than those of the individuals.
However, AI-ED differs from distributed AI in one important 

respect.  In distributed AI, communication and coordination between 

154    Computational Mathetics



agents is considered to be an overhead.  These processes involve 
spending time on activities other than directly solving the problem.  
Therefore, they should be engaged in only to the extent necessary to 
maximise the efficiency of a problem-solving process.  

In AI-ED, on the other hand, efficiency of problem solution 
is not the main concern.  Advocates of collaborative problem-
solving are more concerned that the processes of communication 
and coordination should promote various kinds of metacognitive 
activity which are beneficial to learning.  For example, in the 
student-program-student scenario, one student may require the 
other to justify a proposed problem-solving step before agreeing 
to proceed: the process of generating such an explanation may, in 
some circumstances, improve the problem-solving abilities of both 
students, although it may actually interfere with the current solution 
process.  Some of these factors will be considered in chapter 6 (on 
metacognition) and chapter 9 (on dialogue). 

At the beginning of this chapter, we discussed how an agent a may 
solve problems by applying reasoners from the set Reasoners(a) to 
its set of beliefs Beliefs(a) and, through the Interpret function, 
how an agent may reason ‘on behalf of’ another agent.  We did not 
discuss how an agent selects reasoners to apply, because that involves 
consideration of the goals of the agent (which will be discussed in 
the next chapter).  However, we can consider in outline how we can 
extend this to deal with distributed reasoning.

If an agent has complete knowledge of the beliefs, reasoners, 
goals, intentions, and so on of all other agents (and infinite time 
to consider the matter) then it could in principle determine some 
optimum action.  In practice, this is infeasible as it is not possible 
to make fully reliable ascriptions to other agents.  The simplest 
approach is to appoint one agent, who is assumed to have adequate 
knowledge of the other agents, to a role of coordinator, responsible 
for allocating tasks to achieve coherent behaviour towards some goal, 
its own, usually.  This might be the role of the program in the student-
program-student scenario (or a teacher in a classroom).  If the program 

5.9    Distributed reasoning    155   



is asked to give advice to two students s1 and s2 about the next step 
(or reasoner) to apply or to comment on a proposed one, it would 
need to use Beliefs(c,s1), Reasoners(c,s1), Beliefs(c,s2), 
and Reasoners(c,s2) with the Interpret function, taking into 
account Goals(c), Goals(c,s1) and Goals(c,s2).  An example 
of such a ‘referee’ program in the AI-ED context will be discussed in 
section 9.3.  Of course, there is the danger that such a referee would 
become unable to maintain its knowledge of all the other agents and 
would become a decision-making bottleneck.

In general, agents can have only partial knowledge of one 
another’s beliefs and goals.  Therefore, genuinely joint problem-
solving involves a complex process of considering possible 
contributions to meet possibly conflicting goals.  This is obviously 
a problem-solving process in its own right, or, expressed differently, 
it is process which is ‘meta’ to the original problem-solving activity.  
As we have not yet considered how an individual agent performs 
meta-problem-solving, this will be deferred until the next chapter.

156    Computational Mathetics



6

Metacognition

AI-ED research has increasingly emphasised the importance of 
metacognitive skills.  The cognitive apprenticeship manifesto 

(Collins et al, 1989) says that: “We must first recognise that cognitive 
and metacognitive strategies and processes are more central than 
either low-level skills or abstract conceptual and factual knowledge.”  
Other AI-ED research (for example, Shute and Bonar (1986); Derry 
and Hawkes (1993b); Lajoie (1993)) has aimed to develop systems 
to improve students’ metacognitive abilities.  Educational theorists 
such as Dewey, Vygotsky and Piaget all emphasised various aspects 
of metacognition, and more recently Schoenfeld (1987) has stressed 
its role in mathematics education.  Brown (1987) comments that 
“the processes which have recently earned the title metacognitive 
are central to learning and development”.  In AI, the related concepts 
of metaknowledge, metareasoning and meta-level architectures have 
been extensively discussed (Maes and Nardi (1988), Genesereth 
and Nilsson (1987)).  Therefore, computational mathetics should 
consider the nature of metacognition in some detail.

The first generally accepted definition of metacognition was that 
of Flavell (1976): 

“Metacognition refers to one’s knowledge concerning one’s cognitive 
processes and products or anything related to them .. metacognition 
refers, among other things, to the active monitoring and consequent 
regulation and orchestration of these processes in relation to the 
cognitive objects or data on which they bear.”  

Later, Brown (1987) offered 
“Metacognition refers loosely to one’s knowledge and control of 
[one’s] own cognitive system.”

6    Metacognition    157   



Unfortunately, phrases like “anything related to them”, “among 
other things” and “refers loosely”  present an open door through which 
many activities have passed to be labelled as ‘metacognitive’:

being aware of one’s own competence and incompetence, such • 
as anticipating that one will be unable to solve a problem;
knowing about general cognitive limitations, for example, that • 
human memory is fallible, and being able to devise strategies to 
overcome them;
recognising a problem, that is, identifying a problem as similar • 
to an earlier one;
taking account of the characteristics of the problem, such as that • 
a task is dangerous and needs to be tackled carefully;
generating a plan, that is, sketching out a sequence of operations • 
before execution;
using general problem-solving techniques, such as quickly • 
scanning a problem statement to get an impression of its likely 
difficulty;
allocating resources, for example, deciding how much time to • 
spend on certain processes;
being able to consider one’s own knowledge and to apply it to • 
problems of different kinds;
modifying cognitive processes, that is, learning, by, for example, • 
reflecting on how next time to avoid difficulties encountered;
applying sound strategies, for example, in a scientific • 
investigation to modify only one variable at a time;
checking the consistency of incoming or calculated data;• 
sharing control between cognitive and metacognitive processes;• 
monitoring a solution process, to ask oneself if the goal is • 
becoming nearer and to know when to abandon a process;
evaluating a solution, for example, by double-checking with a • 
different method;
evaluating the solution process, for example, by considering • 
time wasted up a blind alley;
being able to explain something to oneself or others.• 

158    Computational Mathetics



All these activities are to some degree ‘extra’ to or transcend 
problem-solving.  They involve the allocation of cognitive effort to 
activities which are not directly concerned with the problem at hand.  
Of course, the hope is that the investment in such extra processes will 
lead to eventual benefit with this problem and/or later problems.

Despite this litany of apparently essential skills, metacognition 
is not an unqualified benefit.  Its claimed importance derives from a 
view that it is necessary for an agent to know more than a set of facts 
and how to apply them to solve specific problems.  The agent should 
also be able to reason rationally about the problem-solving process 
itself.  This, it is assumed, will enable the agent to improve problem-
solving performance (that is, to learn), to develop transferable skills, 
and to engage in discussions (such as tutorial interactions) about 
such processes.  

These may sound like platitudes but they are questioned by those 
who doubt that activity derives, or should derive, from a rational 
reasoning process.  Instead, action might follow in response to the 
situation in which the agent finds itself.  Others may even question the 
implicit educational aim of fostering rationality.  We cannot resolve 
such issues, but we can concede that metacognitive mechanisms 
must be applied with caution: an agent that spent too much time at 
the meta-level might accomplish less at the problem-level.

As the activities listed above are, by definition, to some extent 
problem-independent, discussions of metacognition are entangled 
with debates about the existence of general cognitive skills (as 
opposed to problem-specific knowledge).  The fact that general 
cognitive skills can never be applied in their generality but must 
always be contextualised to the particular problem setting (Perkins 
and Salomon, 1989) has led some psychologists to deny their 
existence or at least to give them a minor role in problem-solving 
performance.  

Whatever is meant by the nature of psychological reality, from 
the perspective of computational mathetics this denial is like denying 
the existence of ‘metality’ because only specific instances of metality 

6    Metacognition    159   



(such as iron and copper) exist.  If an agent behaves in such a way that 
it is useful to do so, we will readily ascribe metacognitive abilities 
to it.  Computational mathetics is concerned with the evidence that 
is needed to make the ascription (a diagnosis problem - chapter 8), 
the representation of what is ascribed, and the role such an ascription 
might play in AI-ED systems.

One obvious potential role is to enable an AI-ED system to, in 
some way, teach metacognitive skills.  This again opens a fierce 
debate about how, or even whether, such general skills can, in fact, 
be taught.  The case for attempting to teach general skills which can 
be applied to unfamiliar problems is clear: the feasibility of doing so 
is questioned by many empirical studies that seem to indicate that 
students are unable to learn general skills, taught as general skills (for 
example, Pressley, Snyder and Cariglia-Bull, 1987).  Arguments that 
learning Latin, logic, programming, and so on, improves students’ 
general reasoning and planning abilities have not been supported by 
empirical evidence.  On the other hand, teaching domain-specific 
knowledge seems to lead only to brittle knowledge able to handle 
only formulaic problems.  Perkins and Salomon (1989) reach the 
reasonable compromise that general skills are best taught in a 
domain-specific form, while indicating their general applicability. 

 Anyway, that is a debate for educational research.  The role of 
computational mathetics is, on the assumption that metacognition 
is important for AI-ED system designers, to develop a more precise 
language for discussing the many facets of metacognition and to 
develop practically useful ways of dealing with metacognitive 
ascriptions.  In this chapter we will begin to develop a notation for 
discussing metacognition but we must be realistic about our aims.  
For one thing, discussions of metacognition in the educational and 
psychological literature are very discursive, with no attempt at 
formality and precise definitions.  

As the above list indicates, there is a huge range of activities 
covered by the term ‘metacognition’.  Some of them overlap with 
others in undefined ways.  Some may be more amenable to rigorous 

160    Computational Mathetics



analysis than others.  In AI and computer science, those aspects of 
system performance which are comparable to metacognitive activities 
are often not explicitly defined but are buried in interpreting code.  
Moreover, we must acknowledge the severe difficulty of making 
reliable metacognitive ascriptions.  Often an agent engaged in some 
metacognitive activity (such as reflecting on a recent failure to solve 
a  problem) is exhibiting no behaviour - and there is therefore very 
little evidence from which to make any ascription.  Consequently, 
AI-ED system designers who aim to develop students’ metacognitive 
abilities often try to devise ways for students to ‘externalise’ 
metacognition, without thereby inhibiting it.

Let us first ground the discussion by referring to the only (and not 
widely-disseminated) study of the degree to which AlgebraLand did, 
in fact, foster the development of metacognitive skills, as anticipated 
by advocates of cognitive apprenticeship.  With AlgebraLand, as a 
student applies operators to equations so a tree is built on the screen 
to show the various problem-solving steps, halts and continuations.  
This reification of problem-solving processes provides an 
opportunity for students to “examine their own floundering in order 
to formulate self-monitoring strategies that would help to detect and 
prune nonproductive approaches to similar problems” and to “reflect 
on problem-solving and evaluation strategies in the context of their 
use” (Collins and Brown, 1988).  Did they take the opportunity?

Foss (1987) considers the extent to which students reflected 
on (after) and monitored (during) a problem solution.  Regarding 
reflection, she comments that “naturally, students need some 
guidance while they review their search trees” (and perhaps 
concedes by omission that unguided reflection is unsuccessful or 
simply doesn’t happen).  Three types of review task were used to 
supplement AlgebraLand:

Students were asked to annotate their tree in terms of given • 
equation solving plans.
Students were asked to re-solve the equation, omitting • 
unnecessary steps.

6    Metacognition    161   



Students were asked to compare their solution with an optimal • 
solution.

If the system is not intended to comment on these extra activities 
(as seems to be the case here) then it does not need to represent 
or perform any metacognitive processes itself.  No data is reported 
that students became better equation solvers or better at reflecting in 
general as a result of these de-briefing exercises.

If a solution tree has more than one branch then the student has 
clearly monitored her solution process to some extent, as she has 
decided to abandon one path and start another.  Using post-problem 
interviews, Foss tried to determine when and how students decided 
to abandon a path and gave the following list of conditions (Foss, 
1987):

Surface features of the equation, such as increased complexity.• 
Repeated states, that is, when a previously generated state is re-• 
generated.
Repeated application of inverse operators.• 
Noticing shorter paths, that is, seeing a state on another path • 
which may be closer to a solution.
Temporal cues, that is, after long pauses to decide on an • 
operator.
Difficulty in deciding on an appropriate operator.• 
Subjective certainty factor drops below threshold.• 
Expectation violation, for example, when the application of an • 
operator produces a surprising result.
Plan-action conflict, that is, the actions used to satisfy a goal are • 
ineffective.
Conflicting subgoals, that is, earlier accomplished goals undone • 
while satisfying current subgoal.
This list has been quoted in full because it is indicative of the state 

of the art of metacognitive studies.  AlgebraLand is described as a 
standard system and the importance of metacognition has been much 
emphasised and yet there appears to have been no attempt to clarify 
these intriguing results obtained some time ago.  The conditions are 

162    Computational Mathetics



vaguely described and not independent.  More precise definitions of 
them and data as to their relative occurrence and effectiveness would 
be welcome.  Moreover, the conditions are presented in terms of 
algebra but are (one suspects) instances of more general conditions.  
It would be interesting to know to what extent more generally-stated 
conditions apply to other kinds of problem.  As for reflection, no data 
is reported that students became better equation solvers or better at 
monitoring in general as a result of using AlgebraLand.

The list of metacognitive activities given earlier also shows 
a distressing vagueness.  It is clear that many of them (such as 
allocating resources) are related to others (such as generating a plan).  
AI-ED system designers are exhorted to take fully into account 
the importance of metacognition, although educationalists and 
psychologists seem reluctant or unable to say precisely what it is.  
Actually, what has been called metacognition is an amalgam of many 
different things, and they will never be satisfactorily disentangled 
until a precise technical language is adopted for doing so.  We will 
work towards our own language by first briefly reviewing AI work 
on meta-level architectures and metaknowledge.

6.1 Meta-level architectures

A meta-level architecture defines a computational system in terms 
of an object-system and a meta-system (Maes and Nardi, 1988).  

The object-system contains a model for reasoning about the world 
to solve problems; the meta-system contains a representation of 
the object-system, which it reasons about (Figure 6.1).  The object-
system and its meta-system representation are causally connected, 
meaning that any change in one causes a change in the other.   

The purpose of such architectures has mainly been to permit 
control of object-system computations.  An intelligent agent should 
be able to oversee its own problem-solving processes.  It should be 
able to assess the merits of particular methods and use the results of 
such assessments to decide upon subsequent steps.

6    Metacognition    163   



In practice the architectures are often realised by means of 
meta-circular interpreters, which are explicit representations in 
the language itself of the interpreter of the language used to define 
the object-system and meta-system.  Such systems are necessarily 
causally connected but the disadvantage is that the meta-system 
representation must be a complete and efficient representation of the 
operation of the system.  

Alternatively, in declarative reflection the causal connection 
is maintained by explicit specifications incorporated in the 
interpretation process.  Some systems carry out all inference in 
the object-system, having no separate meta-system interpreter and 
evaluating meta-predicates at fixed points in the computational 
cycle.  Others perform all inference in the meta-system, simulating 
the object-system interpreter.  It is also possible to have separate 
interpreters for the two systems.

Many classical AI systems can be re-described in terms of meta-
level architectures, to no obvious purpose except to show that the 
basic idea (stripped of the jargon) is not particularly radical.  For 
example, TIERESIAS  (Davis, 1980) has rules in the meta-system 
which ordered and pruned rules in the object-system.  SOAR (Laird, 

 
meta- 
system

model for reasoning 
about the object-system

causal connection

object- 
system

model for reasoning 
about the world

 
 

 Figure 6.1.  Object-system and meta-system

164    Computational Mathetics



Rosenbloom and Newell, 1986) has three levels: a ‘problem space 
level’, a ‘production level’ that applies productions from long-term 
memory to objects in working memory, and a ‘preference level’ that 
selects between candidates or signals impasses, which are overcome 
by recursively applying the three levels to a new sub-goal.

6.2 Metaknowledge

It is sometimes argued that what a student knows is less important 
than what she knows she knows or does not know.  Knowledge 

of one’s own limitations can be a reason for acting, to acquire 
knowledge, and for not acting, to avoid contemplated actions outside 
one’s competence.  We would like to be able to handle everyday 
statements such as “I don’t know anything about art” and “Anything 
I don’t know about isn’t worth knowing.”  

In AI, such issues are considered as metaknowledge, that 
is, knowledge about knowledge.  Of course, we can also have 
‘metabelief’ and plausibly meta some of the other mental ascriptions, 
such as metacommitment and metagoal, although these terms 
are not in use.  We have already met some techniques for dealing 
with metaknowledge, for example, in autoepistemic logic and the 
introspection axioms in modal logic.  The basic idea, which we 
will elaborate on below, is to reason about the contents of a set of 
sentences representing belief or knowledge, rather than about the 
individual sentences.  We will make a distinction, which is not always 
made clear in AI, between metaknowledge and metareasoning, that 
is, reasoning about reasoning, which is more concerned with how a 
meta-level architecture is interpreted.

6.3 Metacognitive schemata

In the previous chapter, we discussed the idea of a set of reasoners 
being applied to a set of beliefs, through an Interpret function, to 

solve a problem.  Now we must consider and extend the definition of 

6.1    Meta-level architectures   165   



this interpretation process.  Let us first consider an artificially simple 
case: an agent reasoning, using modus ponens and modus tolens, 
about metals.  The reasoners themselves do not determine which 
conclusions will be drawn - for this, we need to specify, for example, 
that modus ponens will be applied first and then modus tolens.  A 
rule for selecting a reasoner to apply will be called a ‘monitor’.  

In general, then, we will ascribe to an agent a set of monitors 
MS.  Whereas the set of reasoners RS maps the agent’s beliefs BS into 
a new set of beliefs BS’, the set of monitors MS maps RSxBS into 
(RSxBS)’.  In general terms, a reasoner is a function of its ‘lower 
level’ BS and produces results at this lower level, and a monitor is a 
function of both its lower levels (RS and BS) and produces results at 
its lower levels.  We will represent this by the notation:

{ monitors  
 { reasoners  
  { beliefs }}} 

For example, we might have:
 { Applicable(modus-ponens) → apply(modus-ponens), 
   Applicable(modus-tolens) → apply(modus-tolens), 
   ... 
  { modus-ponens: P → Q, P >> Q, 
    modus-tolens: P → Q, not Q >> not P, ... 
   { Metal(iron), 
     not Shiny(sulphur), 
     Metal(copper), 
     Metal(x) → Shiny(x), ... } } } 
In this case, it is intended to indicate that the agent will derive the 
conclusions Shiny(iron) and Shiny(copper), using modus ponens 
before the conclusion not Metal(sulphur), using modus tolens.

We will not pause to develop a formal notation for monitors, as 
this is difficult technically.  First, we need to clarify the intentions 
informally.  The notation above is supposed to indicate that if modus-
ponens is applicable then it will be applied before modus-tolens.  Of 
course, this intention is only implicitly indicated by the ordering of 
the monitors (alternatively, we could have attached weights to the 
monitors).  Making this intention explicit would involve defining 

166    Computational Mathetics



a further outer set of rules, to define how a monitor is selected to 
apply.  This will be considered later.  (Readers may be alarmed at the 
prospect of an infinity of chapters each making explicit how rules of 
the previous chapter are applied.)

Below, we give some illustrations to indicate an approach 
towards explicitness in discussing some aspects which, though said 
to be important for AI-ED, are always discussed informally.  We will 
see in outline how some of the metacognitive processes listed at the 
beginning of this chapter can be addressed.  Adding more detail to 
any one of these aspects - for example, to check the consistency of 
ascriptions - would be a major research undertaking.  Some will be 
considered further below.  First, we just comment on some general 
points.

The discussions of sections 4.5 and 5.1 about the domain-
relatedness and abstractness of beliefs and reasoners can be echoed 
for monitors.  A monitor such as:

Applicable(modus-ponens) → apply(modus-ponens) 
might be considered to be a member of Domain-monitors(a) 
because modus-ponens would be a member of the agent a’s domain- 
vocabulary.  A monitor such as:

More-complex(state) → abandon-path 
might be considered to be a member of Abstract-monitors(a).  
Intuitively, it seems that many monitors will be abstract and concerned 
with general problem-solving skills, and that AI-ED systems will be 
concerned with the transition from concrete to abstract monitors.

The above example shows an ascription of monitors, reasoners 
and beliefs to a single agent (a student, say) by an observer.  As 
discussed previously, in AI-ED we have to consider at least two 
agents (a student and a system) and, at minimum, the ascriptions 
of one (the system) to the other (the student).  We will denote the 
ascription to an agent a by Asc(a), so that:

{ m1, m2, ...  
 { r1, r2, ...  
  { b1, b2, ... }}} = Asc(a) 

indicates that Believes(a,b1), Reasons(a,r1), Monitors(a,m1), 

6.3    Metacognitive schemata    167   



and so on.  An ascription of one agent a to another b will be denoted 
by Asc(a,b), so that

{ m1, m2, ...  
 { r1, r2, ...  
  { b1, b2, ... }}} = Asc(a,b) 

indicates that B(a,B(b,b1)), B(a,Reasons(b,r1)), and so on.
AI-ED systems are concerned in various ways with considering 

the relations between (at least) Asc(s), Asc(c), and Asc(c,s), that 
is, with comparing the (ascriptions which we might make to describe 
the) way that the student solves problems, the way the computer 
system solves problems, and the way the system believes the student 
solves problems.  We will pursue this in chapter 8.

We can use this notation to represent self-ascriptions of individual 
beliefs, reasoners and monitors.  For example, the contents of 
Asc(s,s)could indicate that the student believes that she reasons 
with modus tolens.  But  we cannot, as it stands, represent more 
global properties of the sets of beliefs, reasoners and monitors.  For 
example, we could use

{ m1, m2, ...  
 { r1, r2, ...  
  { Cold(Mars),  
    B(s,Cold(Mars)), ... }}} = Asc(s) 

to represent that the student believes that Mars is cold, and believes 
that she believes that, but we cannot naturally represent that she 
believes nothing about Neptune.  This last statement is about the 
contents of the set of beliefs, namely that there is no mention of 
Neptune there.  It is a property of the set of beliefs, a ‘belief-set-
property’. Properties about the set of beliefs will be written in square 
brackets at the head of the set:

{ m1, m2, ...  
 { r1, r2, ...  
  { [ Ignorant-of(Neptune), ...] 
    Cold(Mars), ... }}} = Asc(s) 

Computationally, it may be expensive to (re)determine this property 
and its existence as a global attribute can avoid the need for detailed 

168    Computational Mathetics



searches of the set.  Of course, if the contents of the set of beliefs 
changes, then it may be necessary to check that the property still 
holds.  A property is not fundamentally different from the other 
sentences in the belief-set: it is just that the property is determined 
by reasoning about, rather than with, the belief-set.

To make explicit how the property is determined we need to 
specify a reasoner, since it is a process that operates upon the belief-
set:

{ m1, m2, ...  
 { Ɐb (b in Beliefs(s) → not Mention(b,c) >> 
   [Ignorant-of(c)], 
   r2, ...  
  { b1, b2, ... }}} = Asc(s) 

We are here ascribing to the student a reasoner for determining 
whether she is ignorant of some concept.  The conclusion here is 
a kind of meta-belief, which we should not just include among the 
basic beliefs.  It is about the set of beliefs.  The reasoner is no longer 
matching individual beliefs but referring to the set of beliefs.

We can also use such properties to summarise the belief-set.  For 
example, if a student holds certain beliefs we might say that she is a 
‘creationist’:

{ m1, m2, ...  
 { not Descended(man,ape) and 
   age-of-earth < 1 million and ... >> 
   [Creationist], 
   r2, ...  
  { [Creationist, ...]  
    b1, b2, ... }}} = Asc(s) 

Similarly, we can consider a student who cannot solve quadratic 
equations, say.  This is a property of her set of reasoners, namely 
that they do not provide her with a means of solving quadratics (and 
hence is written at the head of the reasoner-set):

{ m1, m2, ...  
 { [Cannot-solve(quadratics), ...] 
   r1, r2, ...  
  { b1, b2, ... }}} = Asc(s) 

6.3    Metacognitive schemata    169   



Likewise, the means for determining a property of the reasoner-set 
has to be specified at the level above, by means of a monitor.  These 
properties may also (in principle) be used to make inferences.  For 
example, if we are told that someone is a creationist then we might 
infer some of their beliefs from that information.

This notation provides the means for dealing with attitudes and 
aptitudes which transcend specific beliefs, reasoners and monitors 
(section 6.9).  In AI-ED, we often assign students to classes (typically 
‘novice’, ‘intermediate’ and ‘expert’).  These are labels defining 
global properties of the ascriptions made.  In principle, we can attach 
properties as precise as we wish, at whatever level we wish..  For 
example, we could describe a student as persistent, irrational and an 
expert on Unix.  These are comments about the monitors, reasoners 
and beliefs, respectively, ascribed to her:

{ [persistent, ...] 
  m1, m2, ...  
 { [irrational, ...] 
   r1, r2, ...  
  { [Unix-expert, ...] 
    b1, b2, ... }}} = Asc(s) 

We need, as usual, to be careful about who has been ascribed 
what: there is a world of difference between the student believing 
that she is a Unix expert and the system believing that she is.  The 
former would be represented in Asc(s,s), the latter in Asc(c,s).  
Asc(s), as above, is an observer’s ascription to the student.

From the definition of a monitor as something that maps RSxBS 
into (RSxBS)’ we can distinguish two types of monitor: those 
that produce new beliefs (or belief-set-properties) and those that 
produce new reasoners (or reasoner-set-properties).  The examples 
above are of the former type.  New beliefs may be generated not 
just by interpreting reasoners but also by learning processes, such as 
generalisation.  For example:

{ Concrete(x) → generalise(x), ...  
 { r1, r2, ...  
  { Planet(neptune) → Orbits(neptune,sun), 
    ... }}} 

170    Computational Mathetics



where Concrete(x) indicates that the belief x has no variables, 
might lead to the new belief:

Planet(y) → Orbits(y,sun) 
or indeed

Planet(neptune) → Orbits(neptune,y)  
Planet(x) → Orbits(x,y) 

if we are not careful.
A monitor may generate new reasoners in various ways, for 

example, by reacting to the inadequate performance of existing 
reasoners, by perhaps generalising them.  The result of a generalisation 
is an entity at the same level as the object generalised; the process 
of generalising is an entity at a meta-level.  Of course, the precise 
definition of generalisation is complex (section 7.3).  We  might also 
represent a process of ‘compilation’ whereby reasoners are coalesced 
into a more efficient reasoner.   For example,

{ Reasoner(x1 and x2 >> x3) and  
   Reasoner(x3 and x4 >> x5) →  
 new-reasoner(x1 and x2 and x4 >> x5), ...  
 { p → q and p >> q,  
   q and not q or r >> r, ...  
  { b1, b2, ... }}} 

might lead to the new reasoner:
p → q and p and not q or r >> r 

We should note that the curly bracket notation does not allow 
the expression of all the sentences we need.  We can represent 
B(a,p) and B(a,not p), but not not B(a,p), and similarly for 
multi-agent ascriptions.  We cannot quantify over expressions, use 
logical operators, and so on.  In such cases, we must resort to the full 
notation.

Finally in this section, we should remark that, although the notation 
and terminology may be different, this three-level architecture is 
comparable to the distinctions which cognitive scientists make in 
describing the kinds of knowledge needed for problem-solving.  
Roughly corresponding to our beliefs, reasoners and monitors are: 
static domain, inference and task knowledge (Breuker and Wielinga, 

6.3    Metacognitive schemata    171   



1989); problem-situation knowledge, procedural knowledge and 
declarative knowledge (de Jong and Ferguson-Hessler, 1986); 
declarative, procedural and conditional knowledge (Anderson, 
Boyle, Corbett and Lewis, 1990); and conceptual, procedural and 
utilizational knowledge (Smith, Greeno and Vitolo, 1989).  As even 
the terms indicate, the precise relationship between all these concepts 
is hard to specify.

6.3.1 Problem-solving

This section gives some brief illustrative examples of our notation.

(a)  Symbolic logic

Students of symbolic logic are required to use rules of inference to 
derive expressions in a logical system.  For example, Twidale (1989) 
describes a system to support students carrying out natural deduction 
proofs in propositional logic using the rules given in Lemmon (1965).  
In this case, the belief-set contains beliefs about the goal and the on-
going proof.  The reasoners are the rules of inference specified by 
Lemmon.  The student’s task is to determine an appropriate sequence 
of applications of these reasoners, and more generally to develop a 
set of monitors to enable her to carry out efficient proofs in general.  
A set of heuristics are suggested to guide the student: “assume any 
assumptions stated in the goal, then apply any of modus-ponens, 
modus-tolens, and-elimination or double-negation, then if you’re 
trying to prove X → Y use the conditional-plan, and so on.”  These 
heuristics are all monitors, in our terms.  

So, for a competent agent, we might ascribe:
 { make-assumptions, 
   Applicable(modus-ponens) → apply(modus-ponens), 
   Applicable(modus-tolens) → apply(modus-tolens), 
   apply(double-negation), 
   ... 
   Goal(X → Y) → plan(conditional), ... 

172    Computational Mathetics



  { assumption: ..., 
    modus-ponens: P → Q, P >> Q, 
    modus-tolens: P → Q, not Q >> not P,  
    conditional: ..., ... 
   { Goal(P or Q → not(not P and not Q)), 
     Assumption(P), 
     not not P, ... } } } 
Although there are many details under-specified, we can make some 
general points.  The monitors can function in a data-driven or goal-
driven fashion.  An agent might apply any reasoner that is applicable 
to the current data - this is like a novice logician blindly applying 
any rule of inference she can in the hope that the required expression 
will result (behaviour that is actually observed with beginners).  Or 
an agent may be driven by the goal (or sub-goals) to set up plans.  
All the previous discussion about beliefs and reasoners (for example, 
that an agent might need to keep track of which reasoners have been 
applied, such as not not P from Assumption(P) using double-
negation; that an agent, especially a student, may have incomplete 
or incorrect reasoners; and that the actions will need to be expressed 
using a notation like that of the situation calculus) continues to apply 
and will not be repeated in this chapter.

(b)  Algebra

In this case, the reasoners are the operators which are available and 
the beliefs concern the equation to be solved and general knowledge, 
for example, about arithmetic.  Monitors are concerned with the 
application of reasoners.  For example, if a student says “Whenever 
I see any brackets I multiply them out” she is expressing a monitor, 
referring to a reasoner concerned with the actual operation of 
multiplying out.  A competent student might use a strategy of isolating 
the target variable (by getting rid of associated numerals), after 
collecting up multiple occurrences of the variable.  The conditions 
for abandoning a search path specifed by Foss (1987), listed earlier, 
are also monitors.  Thus, we might have an ascription, in outline:

6.3.1    Problem-solving    173   



 { Has-brackets(exp) → remove-brackets(exp), 
   Multiple-occurrences(var,exp) →  
  plan(collect-variables,var,exp), 
   Single-occurrence(var,exp) →  
  plan(isolate-variable,var,exp), 
   More-complex(exp) → abandon-path, ... 
  { remove-brackets: ..., 
    abandon-path: ..., ... 
   { 6x+9x+4 = 26-7, 
     26-7 = 19, ... } } } 

Once such an outline is sketched it becomes a challenge for greater 
precision, which is the hallmark of the approach of computational 
mathetics.  For example, we might immediately ask what is meant 
by abandon-path, and begin to elaborate ideas how about an agent 
changes the equation currently focussed upon.  However, at this 
point, precision is not the objective, not least because precision in 
itself is not a virtue - we need a clearer idea of what AI-ED systems 
need increased precision for.  At the moment, we have an informal 
picture of an agent being ascribed monitors to account for behaviour 
such as deciding which operator to apply, setting up a plan of 
action, abandoning a path, and so on, the monitors themselves being 
represented in a production system-like notation.

We can make further general points, however.  For example, 
which items should be ascribed to which level is not fixed but 
depends upon the agent.  A novice, for example, might need to 
form a plan to isolate a variable, this plan being achieved by the 
application of several primitive operators, whereas an expert might 
have ‘compiled’ a (macro)operator to accomplish this step, this 
being represented by a reasoner, in our terms.  In the latter case, our 
ascription might become:
 { Has-brackets(exp) → remove-brackets(exp), 
   Single-occurrence(var,exp) →  
  isolate-variable(var,exp), ... 
  { remove-brackets: ..., 
    isolate-variable: ..., ... 
   { 6x+9x+4 = 26-7, 
     26-7 = 19, ... } } } 

174    Computational Mathetics



We can anticipate that one process of learning, that is, the agent 
moving from simple to more complex operators, might be represented 
by a process of editing such a description (chapter 7).

Also, we can see that we have scope for capturing the generality 
of monitors.  The above examples are all in terms of algebra but 
we could generalise the monitors, if we considered that an agent 
behaved in such a way that it might be ascribed a more general rule, 
and imagine them to be instantiated to algebra.  For example, we 
might have a monitor:

More-complex(state) → abandon-path 
to express the rule that whenever during problem-solving of any 
kind we generate a more complicated state then we should abandon 
that method and try something else.  Of course, an effective agent 
will refine this general rule, because it is sometimes necessary to 
make matters temporarily worse, but it is a plausibly useful problem-
independent heuristic.

(c)  Chemistry

An organic chemistry student may be asked to synthesise, that is, 
specify a sequence of chemical reactions to produce a specified 
compound, for example, 2-chloro-2,4,4-trimethylpentane.  The 
student is given an (implicit) list of possible ingredients - any 
compound found in a chemistry lab, such as ethylene, propylene, and 
so on - and an (implicit) list of ‘operators’ - those chemical reactions 
described in a textbook, such as cationic polymerisation, alkylation, 
and so on.  The student should bear in mind various heuristics - 
maximise the yield, minimise the time (or number of reactions) to 
generate the target compound, minimise general inconvenience, 
maximise safety, minimise cost, and so on.  

In our terms, these heuristics are monitors - they help to 
determine which chemical reaction to carry out.  The chemical 
reactions themselves are reasoners - they are capable of operating on 
chemicals to produce new chemicals.  The properties of the chemicals 

6.3.1    Problem-solving    175   



and the reactions constitute the basic knowledge of the domain.  In 
this case, the control regime for the monitors is one of selecting the 
best available option, rather than the first that is applicable:
 { Goal(x) and Alkyl(x) → plan(akylation), 
   Applicable(reaction,y) and Available(y) and 
  Danger(reaction,low) → apply(reaction), ... 
  { cationic-polymerisation: ..., 
    aklylation: ..., ... 
   { Goal(2-chloro-2,4,4-trimethyl-pentane), 
     Colourless(propylene), 
     Danger(cationic-polymerisation,low), 
     ... } } } 

In this case the amount of detail needed is immense - several 
hundred pages of an advanced textbook, plus more elementary 
knowledge of chemistry and other commonsense knowledge - but 
almost all that which is in the textbooks is at the lower two levels, 
whereas the knowledge which really distinguishes an expert chemist 
lies more at the third level.  The more that this knowledge can be 
made explicit, then maybe the more likely it is that an AI-ED system 
could help students acquire such knowledge.  It is perhaps possible 
that a representation such as the above could be elaborated (at the 
monitor level) to form the basis for an organic chemistry simulation 
which aims to give planning and monitoring advice to students.

(d)  Music

We can now re-consider the student asked to discuss Beauvais’s Play 
of Daniel (section 1.1).  This is a different kind of problem to that 
in mathematics and science but we can try to distinguish, in general 
terms, the kinds of knowledge which need to be brought to bear to 
tackle it.  At the domain level, we have the host of beliefs which 
the student may have about the Play of Daniel (who composed it, 
when, details of the music itself, ...), about music generally (forms 
of music, how music is performed, ...) and about the world generally 
(social conditions when Daniel was composed, the nature of religious 
ceremonies, ...).  

176    Computational Mathetics



This is a vast body of knowledge to represent in computational 
form - but, thankfully, we might not have to, at least, not in great 
detail, for two reasons.  First, an AI-ED system itself may provide 
access, through a multimedia system, to this kind of knowledge.  In 
so far as the system needs to know it, it may be able to ask the 
student.  For example, after the student has read the relevant pages, 
the system can ask: “ok, so when was Daniel composed?”.  The 
second reason follows: the system is not really concerned with the 
domain level per se.  It is rather assumed that the student is competent 
to understand all the domain level concepts.  What she is more likely 
to need advice with are strategic questions about which domain level 
entries are most important.

In this case, there are more or less specific rules for inferring 
new information from what is known.  For example, we might infer 
the approximate date of a piece of music from the notation in which 
it is written, or the musical instruments for which it is composed.  
There are many kinds of ‘operation’ which one may perform to 
determine, for example, various contrasts: secular/sacred, serious/
comic, traditional/non-traditional, and so on.  For example, the use 
of non-liturgical inclusions illustrates the secular/sacred contrast.  It 
may be that a student will need advice in this area, for she may 
have gathered the relevant ‘raw facts’ but not noticed an important 
conclusion that follows from them.

More likely, the student will need help in deciding what facts to 
gather.  There is an infinity of facts that could be stated about Daniel: 
the student needs to know which facts are most likely to lead to the 
kinds of conclusions which will contribution to a successful critical 
essay.  It may be appropriate to look for contrasts with other music, 
to explain the musical style, to describe the plot, to place the piece 
in its artistic and social context, and so on.  Of course, no computer-
based learning environment can hope to provide infallible advice 
in these respects.  On the other hand, some advice is conceivable.  
Some of it is ‘data-driven’ - for example, if the student records the 
fact that Daniel was composed in the 12th century then this could 

6.3.1    Problem-solving    177   



trigger a number of follow-on questions, such as: Was anything like 
it composed before?, Was the music written down?, Was anything 
happening in the 12th century that led to this composition?, and so 
on.  Some of it is ‘goal-driven’ - for example, to write an essay on 
any piece of music it would seem necessary to establish when it was 
composed in order to put it into its historical context.

At the risk of being too simplistic, we could illustrate this in our 
framework:
 { Goal(criticise(x)) → plan(category(x)), 
   Goal(criticise(x)) → plan(meaning(x)), 
   Goal(category(x) → plan(date(x)), 
   Goal(meaning(x)) and not Composer(x,y) → 
  plan(read-composer(x,y)), 
   Applicable(x) → apply(x), ... 
  { modus-ponens: P → Q, P >> Q, 
    category: Isa(x,b) → Category(x,c) and 
    Isa(a,b) >> Category(a,c), ... 
   { Goal(criticise(daniel)), 
     Isa(daniel,feast-of-fools-play), 
     Isa(x,feast-of-fools-play) →  
    Category(x,jocular), ... } } } 
The first two monitors, for example, say that if the goal is to criticise 
something then you might set up a subgoal of determining its 
category or its meaning.  Later monitors might say that if the (sub)
goal is to determine the meaning of a piece of music you might set 
up subgoals to determine its composer or its performer.  The last 
monitor listed simply says that if any reasoner is applicable, then 
apply it (undirected data-driven reasoning).  If a computer-based 
advisory system has access to such a representation then it might be 
used to advise a student who does not know how to proceed, or to 
comment on the student’s plans for proceeding.

6.3.2 Metareasoning

This three-level framework can be used to describe metareasoning 
techniques as developed in AI and to provide limited reasoning (as 

178    Computational Mathetics



discussed in section 5.2).  The general idea is that the monitoring 
level specify properties of the reasoning level which determine how it 
is interpreted with respect to a set of beliefs.  The aim is to clarify the 
nature of cognitive activity during problem-solving and specifically, 
for student modelling purposes, to enable the system to explicitly 
model and reason about different aspects of a student’s competence.  
Unless these components are declaratively specified, they cannot be 
dynamically changed by the system (to model changes in the student 
or to adapt the general framework to an individual student) and they 
cannot form the focus of instructional interactions.

Consider the following ascription:
 { Easy(x) → apply(x,3), 
   Difficult(x) → apply(x,1), ... 
  { [Difficult(modus-tolens), Easy(modus-ponens)] 
    modus-ponens: P → Q, P >> Q, 
    modus-tolens: P → Q, not Q >> not P, ... 
   { Cold(Neptune), 
     Cold(Pluto), 
     Cold(x) → Lifeless(x), 
     not Lifeless(Mars), 
     not Lifeless(Earth), ... } } } 
Ignoring the considerable technical problems, the intention is that 
the monitors indicate that easy reasoners are applied (at most) three 
times and difficult reasoners (at most) once.  This particular agent is 
believed to consider modus-tolens a difficult rule and modus-ponens 
an easy one.  Interpreting these schemata we obtain the derived 
beliefs:

Lifeless(Neptune)  
Lifeless(Pluto)  
not Cold(Mars)  

but not not Cold(Earth), assuming that the schemata are applied 
from the beginning of the belief-set.  

The idea of a metalanguage has been much studied in AI and 
in mathematics (for example, to overcome logical paradoxes).  At 
first in AI, metareasoning was used to shorten proofs obtained 
using simple, uniform deduction strategies such as those based on 

6.3.2    Meta-reasoning    179   



resolution, by, for example, looking at syntactic structure rather than 
repeatedly applying inference rules.  Metareasoning has since been 
applied to many areas of AI.  We will illustrate the method by two 
examples related to student modelling.

Aiello and Micarelli (1990) describe a system called SEDAF to 
help students learn how to graph mathematical functions by solving 
for characteristics of the function.  The system’s architecture can be 
described, in outline, by the following ascription:
 { Answers(p,yes) and Proof(p,d) and 
   q is member of d → B(s,q), 
   Answers(p,yes) and Proof(not p,d) and 
   q is member of d → B(s,not q), 
   Answers(p,dontknow) and Proof(not p,d) and 
   q is member of d → B(s,not q), ... 
  { resolution: P → Q1, not P → Q2 >> Q1 or Q2 
     { Stationary(x,f) and  
    Decreasing-left(x,f) and      
    Increasing-right(x,f) → Minimum(x,f),   
     Denominator-zero(x,f) → Pole(x,f),  
     ... } } } 
The set of beliefs describes the properties of the domain.  The system’s 
reasoning schemata are not stated but in fact amount to the rule of 
resolution.  In order to associate a meta-level with the reasoners, a 
meta-level predicate Proof(p,d) is defined which asserts that d is 
a derivation or proof of proposition p (using the specified reasoners 
on the specified beliefs).  Proof is defined by a suitable set of meta-
axioms, so that if Proof('p','d') is a theorem of the meta-theory 
then d is a derivation of p (using the reasoners and beliefs) where 
‘p’ and ‘d’ are the representations of p and d at the meta-level 
(Weyhrauch, 1980).  

The first monitor specifies that if the student answers “yes” to a 
problem which the system can prove then it is inferred that the student 
believes all the propositions used in the derivation of the proof.  If 
the student answers “no” or “don’t know” to such a problem then the 
system infers that the student does not believe those propositions.  In 
general, she would not know one or more of those propositions, and 

180    Computational Mathetics



the system might begin some dialogue to work out which.  Note that 
the same reasoning schema (resolution) is used throughout, which 
is not necessary formally: we could try to develop a representation 
which better corresponds to the student’s reasoning processes.

The underlying reasoning of the LNT system (Van Arragon, 
1991) is based upon a version of resolution (linear resolution) and 
uses the meta-level predicate Infer.  Infer(p→q) means that q may 
be inferred from p, from the beliefs using linear resolution.  It is used 
at the meta-level in monitors of the form:

conds → not Infer(p→q) 
where conds defines the conditions under which the inference cannot 
be made.  Therefore, this use of Infer provides a kind of inhibited 
or limited reasoning.  The following ascription might describe a 
student who will not make an inference of two or more steps and 
so will not infer not Liquid(mercury) and will be unaware of the 
(potential) inconsistency of her beliefs:
 { Infer(p1→q1) and Infer(p2→q2) and not q1=q2 →  
  not Infer(p→q), ... 
  { linear-resolution: ... 
     { Metal(mercury), 
     Liquid(mercury), 
     Metal(x) → Solid(x), 
     Solid(x) → not Liquid(x), ... } } } 
This was the basic idea used in the foreigner example of section 5.2.1 
to handle a more interesting case of limited reasoning, that of lack 
of awareness.  Other types of limitation can be similarly expressed.  
For example, a particular reasoning step may be too difficult for 
novices to carry out:

Difficult(p→q) and Novice(s) → not Infer(p→q)  
These two meta-level predicates (Proof and Infer) just ask 

questions about derivations in the lower level.  In general, monitors 
can also impose restrictions on what can be derived.  They could, for 
example, assume that the lower level will draw the inferences it is 
capable of, unless the meta-level knows of constraints which prevent 
them being drawn.  This approach is independent of the underlying 

6.3.2    Meta-reasoning    181   



reasoning procedures - but to actually design such a meta-level we 
have to commit ourselves to a particular underlying procedure.  
Both SEDAF and LNT have been implemented in Prolog, in which 
it is relatively easy to write a meta-interpreter to define meta-
level predicates such as Proof and Infer.  Such implementations 
demonstrate both the methodological advantages of having a 
formal specification and the practical advantages of concise, rapid 
prototyping.  However, the extra layer of interpretation may lead 
to inefficiency, although techniques are being developed to help 
overcome this (Donini et al, 1990).

6.4 Planning

To develop more detail on metacognition we can adopt the standard 
division of metacognitive activities into those that happen 

before, during and after problem-solving, that is, as they are often 
called, planning, monitoring and reflecting, respectively.  Standard 
though it is, it is not a very precise division, because problem-solving 
typically involves setting up sub-problems to solve and hence an 
activity that occurs after the sub-problem is solved is ‘reflecting’ 
from the perspective of the sub-problem but ‘monitoring’ from the 
perspective of the original problem.  Instead, the division could be 
based on the timescale over which the activity is concerned.  For us, 
planning will concern the consideration of events in the near and 
relatively distant future; reflecting will concern the consideration of 
events in the near and relatively distant past; and monitoring will 
concern the consideration of events in the near past and near future.  
Given the vague boundaries, we can anticipate some overlap in the 
three kinds of activity.

Planning is concerned with “finding a series of actions that can be 
expected to have a desirable outcome” (Ginsberg, 1993).  Planning is 
relevant to AI-ED for two main reasons.  First, AI-ED systems may 
need to plan to achieve the desirable outcome of a student learning.  
This is considered in chapter 10.  Secondly, students may need to 

182    Computational Mathetics



plan to solve problems and systems may need to model their planning 
processes.  For an illustration, imagine a trainee car mechanic using 
a simulation to learn how to change the wheel on a car (a version 
of this problem has become a benchmark for AI planning research 
(Barrett and Weld, 1994)).  There are various actions available to her: 
jack the wheel, unbolt the lugs, ...  We would not expect a competent 
mechanic to simply apply the (simulated) actions to see if they are 
useful, but to form some overall plan, to, say, first remove the wheel, 
and so on.  A good AI-ED system would be able to communicate 
with the trainee about plans and not just about actions.

A good plan need not be complete and fully specified before 
any action is carried out.  Consider a student solving an integration 
problem.  She might plan to use a t=tan(θ/2) substitution and then 
review the new situation.  To anticipate the second step would involve 
determining the outcome of the first step, and therefore developing 
a complete plan would be tantamount to solving the whole problem 
in the head before solving it for real.  Our trainee mechanic might 
develop a more detailed plan because the outcomes of the various 
actions might be considered more predictable.  Also, the need for 
planning depends on the ease of carrying out and undoing actions.  

As far as AI-ED is concerned, we need to be aware of the 
considerable difference between, say, changing a wheel in a 
simulation and on a real car.  Many AI-ED systems make a feature 
of the fact that it is easy for students to apply and undo operators 
and hence to experiment.  If the intention is that students develop 
planning abilities then this feature may be counter-productive.  For 
example, AlgebraLand aimed to develop metacognitive skills but 
reduced the need for students to plan by making it inexpensive to 
recover from mistakes.

At first glance, it might seem that we need no special mechanisms 
to deal with planning: we could just represent everything in predicate 
logic, carry out a constructive proof that our goal can be achieved, 
and from the proof extract the actions needed to reach the goal.  It is 
not that simple, for various reasons which we can relate to AI-ED:

6.4    Planning    183   



As planning involves reasoning about action, we will probably • 
need to use the situation calculus (with the problems mentioned 
earlier, such as the frame problem) and nonmonotonic reasoning 
techniques.  Putting a wheel on will probably leave the jack there; 
removing the jack may not leave the car where it was.  There 
is a particular problem of subgoal interaction, where one action 
undoes the desired effect of an earlier action.
Planning needs to be integrated with performance, as even the • 
best-laid plans may go awry when executed.  It should not be 
necessary to re-plan from scratch if the previous plan can be 
adapted to overcome the unanticipated situation.  An instructional 
plan may need to be modified if a student demonstrates an 
unexpected misunderstanding.  It may happen that unexpected 
events ease the execution of a plan.
Few problems are so novel that a complete plan needs to be derived • 
afresh.  Often, some similar problem has been solved in the past 
and the plan for that problem may be adaptable (‘case-based 
planning’ (Hammond, 1990)).  The difficulty lies in specifying 
problems so that similarity can be determined and specifying 
plans so that they may be amended.
Planning in AI usually assumes that there is only one agent with • 
goals and actions.  In AI-ED, we have at least two agents with 
their own goals and actions, and these may be in conflict, to some 
extent.
It is usually assumed that planned actions are carried out in series • 
but, of course, it may be possible to carry some out in parallel.  It 
is not easy to predict the interactions between such actions even 
given definitions of their effects if carried out separately.
An agent will typically have more than one goal - some local • 
(such as ‘get a new wheel on’), some more global (such as ‘gain 
a qualification’ and ‘keep healthy’).  The goals may not just be in 
terms of desirable states of the world - they may be in terms of 
minimising or maximising some objective (such as time and cost) 
or preventing some state of the world.

184    Computational Mathetics



Not only does the goal or goals impose constraints on the plan • 
obtained but there are typically constraints on the planning 
process itself.  A doctor cannot spend an indeterminate time on 
devising a plan for a thorough diagnosis - a patient may need 
speedy action rather than that which a lengthy analysis might 
show is optimum.
Despite all these complexities, Ginsberg (1993) predicts 

that planning is the area of AI research that will make the most 
progress in the next ten years.  Here, we will outline how the formal 
representations of planning relate to the previous schemes developed 
and to AI-ED generally.  Plans and goals may be ascribed to agents 
like the other mental constructs we have discussed.  Up till now, we 
have included them among the set of beliefs, but we may now wish 
to separate them:

{ m1, m2, ...  
 { r1, r2, ...  
beliefs: { b1, b2, ... } 
goals:  { g1, g2, ... } 
plans:  { p1, p2, ... }}} 

It might be useful to partition monitors and reasoners according to 
whether they operate on beliefs, goals or plans (of course, some may 
operate on more than one).

Goals and plans correspond to modal operators and hence have 
the properties discussed before, for example, of being referentially 
opaque.  For example, we may have:

Goal(a,visit(capital-of-Germany),t) 
that is, agent a has in situation t the goal of visiting the capital of 
Germany, without necessarily having:

Goal(a,visit(Berlin),t) 
because a may believe the capital of Germany is still Bonn.

As with the other modal operators, we can try to define axioms 
to capture the properties of plans and goals, for example,

Goal(a,g,t) → K(a,Goal(a,g,t),t) 
Goal(a,g,t) and B(a,g→h,t) → Goal(a,h,t) 

Attempts to develop theoretical treatments of plans and goals 

6.4    Planning    185   



usually begin by adopting a set of primitive modal operators and 
then proceed to define new concepts in terms of them.  Cohen and 
Levesque (1990a) opt for four primitive operators: Believes, Goal, 
Happens (what event happens next) and Done (which event has 
just occurred).  Implicit in the last two is a view that the world can 
be described as a linear sequence of events.  The properties of the 
primitive operators are defined by a set of propositions, in the case 
of Believes from weak S4 modal logic, in the case of Happens and 
Done from dynamic logic (Harel, 1979), and in the case of Goal an 
additional set, including:

Goal(a,g) → not Goal(a,not g) 
Goal(a,g) and Goal(a,g→h) → Goal(a,h) 
B(a,Happens(a,e)) → Goal(a,Happens(a,e)) 

Further modal operators (such as Eventually, Always, 
Before, Later) are then defined directly in terms of the primitives, 
and gradually a more complex edifice built up.  For example, an 
‘achievement goal’ A-goal (that is, a goal which the agent believes 
to be currently false, as opposed to a ‘maintenance goal’ which the 
agent believes to be true) may be defined:

A-goal(a,g) ≡ B(a,not g) and Goal(a,Later(g)) 
and then a ‘persistent goal’:
 P-goal(a,g) ≡ A-goal(a,g) and  
  Before((B(a,g) or  
   B(a,Always(not g)),not Goal(a,Later(g)))) 
that is, an agent a has a persistent goal to achieve g if a wants g to be 
true later, and a believes g is currently false, and a believes that this 
state of affairs will continue until a believes g is true or will always 
be false.  

An ‘intention’ to do an action is defined by:
 Intends(a,action) ≡ 
  P-goal(a,Done(a,B(a,Happens(action))?;action)) 
The semantics which Cohen and Levesque define for ‘?’ and ‘;’ 
means that this can be interpreted as saying that an agent intends to 
do an action if it has a persistent goal to believe it is about to do the 
intended action and then doing it.  We can also define an intention 

186    Computational Mathetics



in terms of achieving a desired state of affairs (such as Happy(a)) 
rather than carrying out a particular action.  Pollack (1990) considers 
that an agent a has a plan p={p1,p2,...} to achieve g if:

a•  believes that executing p1,p2,... in order will entail 
performance of g;
a•  believes that each pi plays a role in the plan;
a•  intends to execute p1,p2,... in the specified temporal order;
a•  intends to execute p as a way of doing g;
a•  intends that each pi plays a role in the plan.
In case this brief excursion into philosophically complex 

issues such as intention seems like a diversion from computational 
mathetics, it may be remarked that Bauer et al (1993) report the 
use of an interval-based temporal logic with the modal operators 
Next, Sometimes, and Always to handle plan generation and plan 
recognition in an intelligent help system aimed at providing help to 
users of software systems.  The system attempts to derive a plan from 
its domain knowledge by proving a specification formula.  Planning 
is therefore seen as a kind of automatic programming.

However, the above analyses have not addressed the problem 
of interleaving planning and acting, which is “hard to implement 
and even harder to formalize” (Davis, 1990).  This neglect, with 
its unreasonable assumptions about the nature of planning and its 
practical intractability for time-constrained planning, has led to 
arguments that the underlying assumption that agents decide on goals 
and plans and reason about them (indeed, the underlying assumption 
of symbolic AI itself) is misguided.  Instead, agents’ behaviour is to 
be seen as generated by simple, direct processes stimulated by the 
environment.

So, reactive planning involves little inference or prediction but 
relies upon a library specifying an appropriate action given a goal 
and current situation.  The view is that most behaviour is ‘routine’ in 
that most tasks, once learned, can be accomplished straightforwardly.  
Kaelbling and Rosenschein (1990), for example, describe a ‘situated 
automata’ in which a declarative specification of knowledge in a 

6.4    Planning    187   



modal logic is compiled into a digital machine capable of efficient 
action.  Pollack (1992) expresses scepticism about the wider 
feasibility of such knowledge-compilation techniques.  The phrase 
“once learned” above suggests that we may be even more sceptical 
from the point of view of computational mathetics, because it is 
precisely the transition from unlearned to learned tasks with which 
we are concerned.  In AI-ED we are not just aiming for models that 
perform efficiently - we need models of students’ planning processes 
on tasks for which their behaviour is not yet routine.  Still, the recent 
emphasis on the use of plans rather than on planning per se leads to 
a consideration of monitoring activities, which has been stressed in 
studies of metacognition but relatively neglected in AI.

6.5 Monitoring

For once, we have a term, ‘monitoring’, which does not 
correspond to an established area of AI research, at least, not 

under that name.  However, Genesereth and Nilsson (1987) discuss 
the “process of suspending the process of reasoning, reasoning about 
that process, and using the results to control subsequent reasoning” 
(unfortunately calling that process ‘reflection’).  In a way, monitoring 
problem-solving progress has been part of AI from the beginning, 
as AI problems are characteristically those which cannot be solved 
in a straightforward way.  So, for example, the simple idea of an 
evaluation function to select the next node to expand in a search tree 
could be regarded as a monitoring activity, although it seems more 
an intrinsic part of the problem-solving process than a ‘suspension’ 
of it.  Similarly, the SOAR architecture has a technique of universal 
subgoaling whenever the problem-solving process becomes baulked 
which might also be considered a monitoring activity.

There is no hard-and-fast boundary but it seems that the term 
‘monitoring’ should be reserved for activities which are significantly 
different from those of the ‘normal’ problem-solving process.  The 
latter we have regarded as the application of reasoners to beliefs.  

188    Computational Mathetics



Typically, a monitoring activity involves consideration of problem-
solving events in the near past and future.  The list of conditions 
of when to abandon a solution path in AlgebraLand (given earlier) 
describe monitoring activities:
 { Number-of-applicable-reasoners(n) and n>5 → 
  abandon-path, 
   Last-result(x) and Surprising(x) → abandon-path, 
   ...  
  { r1, r2, ... 
   { b1, b2,... } } } 
Determining the number of applicable reasoners involves peeking 
ahead but not actually applying any of them; considering the last 
result is obviously a reference to a recent event.

It is desirable that monitoring activities be efficient to carry out 
but have the prospect of effecting significant improvements in overall 
performance.  They tend to involve reasoning about inferences 
without actually (yet) making the inferences.  Formal treatments 
therefore involve the use of metareasoning techniques, as discussed 
in section 6.3.  Such formalisations involve considerable technical 
difficulties.  For example, to say in a meta-level that an object-level 
concept (such as modus tolens) is difficult we cannot simply say

Difficult(P → Q, not Q >> not P) 
because the symbols within the brackets are not acceptable 
parameters.  We must name the concept, as we did earlier, and say
 Difficult(modus-tolens) 
Then we must somehow relate the name to the concept, or quote it:

Difficult(“P → Q, not Q >> not P”) 
In the latter case, we then have to be prepared to ‘unquote’ variables, 
because we might want to say, for example, that a variable in one 
expression is the same as that in another.  Then it becomes necessary 
to consider variables to be of different ‘types’ (as suggested in 
section 5.1.2) so that, for example, a metareasoner does not confuse 
an object and a relation.  Once such a technical apparatus is defined 
it is possible to give a rigorous statement of, for example, the process 
of reasoning in predicate logic using the rule of resolution.

6.5    Monitoring    189   



However, although this is mathematical satisfying because it gives 
us a full definition of otherwise implicit processes, there is a danger 
of missing the point from a computational mathetics perspective.  In 
the worst case, all that is achieved is that a relatively simple reasoning 
process is transformed into a more complex metareasoning process, 
a single step of the former now corresponding to many steps of the 
latter.  As Ginsberg (1993) says “control of reasoning is a domain 
where it is better to draw inaccurate conclusions quickly than to 
draw accurate conclusions slowly.”

The fact that realistic agents have limited resources to solve 
problems has led some to advocate a new definition of rationality in 
AI.  The standard AI definition of rationality (discussed in section 
4.1) is that a rational agent will carry out a certain action if it has 
knowledge that one of its goals can be achieved by that action.  This 
definition takes no account of the resources an agent might need to 
expend to conclude that its goals will be achieved.  Instead, Russell, 
Subramanian and Parr (1993) propose the concept of bounded 
optimality, in which the utility of a decision is a function of both 
its quality and the time taken to choose it.  In such a scheme, there 
has to be explicit consideration of the expected benefits and costs of 
potential actions.  Moreover, there has to be explicit consideration of 
the expected benefits and costs of deliberations about those actions 
(and so on, in principle).  At the moment, there are few established 
techniques of resource-bounded reasoning which can be co-opted 
for the purposes of computational mathetics.

6.6	 Reflecting

The term ‘reflection’ has been so generally used in the educational 
and psychological literature that it has come to mean little more 

than the everyday notion of ‘quiet, careful and long contemplation’.  
Locke (1690) contrasted two sources of ideas: sensation and 
reflection, the latter being “the perception of the state of our own 
minds” or “the notice which the mind takes of its own operation”.  

190    Computational Mathetics



Dewey (1938) defined reflection to be “the active, persistent and 
careful consideration of any belief or supposed form of knowledge 
in the light of the grounds that support it.”  Vygotsky (1978) wanted 
reflection to be “the transferral of argumentation to an internal 
level.”  Piaget (1976) referred to “reflected abstraction”, which is 
“linked to both awareness and conceptualisation” (and contrasted 
with “empirical abstraction”, which is “an activity carried out on the 
objects themselves”).  These are rather all-purpose definitions.  We 
will restrict the notion of reflection to refer to the consideration of 
the problem-solving process, after the completion of that process, 
with the aim of improving subsequent problem-solving activities.

6.6.1 Reflective learning

Consider the following extract (Self, 1995) from two students 
contemplating their solution trace from an AlgebraLand-like 
system:

It looked quite easier that way .. than this way [right hand branch], 
this way obviously took more thinking for us.

Yeah.  Cos as a general rule you get all .. the things you dislike on the 
right hand side first don’t you.

Yeah.
In this case, get rid of that nasty 2, and then you expand, cos you 

wouldn’t sort of expand .. if there was an x where that 2 is then we 
would’ve expanded wouldn’t we.

Yeah.
But you just don’t, that’s the general rule, you just don’t.
..

This appears to be two students reflecting on their use of monitors.  
They propose a monitor (‘first get the things you dislike on the right 
hand side’) and then refine that rule.  

To take a simpler example, imagine a student who has (been 
ascribed) the monitor ‘first multiply out brackets’ who, after 
contemplating a tortuous solution attempt, realises that in some 
circumstances, for example, with

6.6    Reflecting    191   



y * (y - 3) + 5 * (y - 3) = 0 
or, in general, when the expressions within the brackets are the same, 
it might be better to collect up terms.  In terms of our three-level 
framework, this appears to involve the use of a fourth level, meta to 
the monitoring level, because it operates on monitors.

Therefore, we will ascribe to an agent a set of ‘reflectors’ FS.  
Whereas the set of reasoners RS maps the agent’s beliefs BS into a 
new set of beliefs BS’ and the set of monitors MS maps RSxBS into 
(RSxBS)’, the set of reflectors FS maps MSxRSxBS into (MSxRSxBS)’.  
In general terms, then, a reasoner is a function of its ‘lower level’ 
BS and produces results at this lower level, a monitor is a function 
of both its lower levels (RS and BS) and produces results at its lower 
levels, and a reflector is a function of all three of its lower levels 
(MS, RS and BS) and produces results at its lower levels.  

We can extend our notation to include reflectors, as illustrated 
by:
reflectors: { ref1: condition → refine(m1), ...    
  monitors: { m1: Has-brackets(exp) →  
      remove-brackets(exp), 
        m2: More-complex(exp) →  
      abandon-path, ... 
  reasoners: { remove-brackets: ..., ... 
     beliefs: { Y*(Y-3)+5*(Y-3)=0, ... }  
    goals: ... 
    plans: ... } } } 

It is hard to give a formal description of reflectors as we are, 
after all, concerned with processes which edit other processes.  The 
idea in the above case is that the condition of ref1 carries out 
some analysis of the problem-solving trace, which is represented 
by problem-specific beliefs (goals and plans), which record which 
reasoners were applied to which beliefs under the recommendation 
of which monitors, and concludes in this case that monitor m1 has 
led to an inefficient solution and should therefore be refined.  The 
reflector ref1’s action refine(m1) determines how m1 should be 
changed and (if we are optimistic) leads, if executed, to the new 
monitors:

192

192    Computational Mathetics



 m1a: Has-brackets(exp) and  
  Different(terms-in-brackets) →  
   remove-brackets(exp) 
 m1b: Has-brackets(exp) and  
  Same(terms-in-brackets) → 
   collect-products(exp) 

From the definition, a reflector can change reasoners and beliefs 
as well as monitors, which seems reasonable because we can imagine 
an agent deciding, after solving a problem and perhaps deriving an 
apparently wrong result, that its reasoners or beliefs were, in fact, 
unsound.  

But also from the definition, a monitor can change reasoners 
and beliefs too, which again seems reasonable, as agents may come 
to such realisations during as well as after problem-solving.  Thus, 
there will be some similarity between some monitors and some 
reflectors, the difference lying mainly in the conditions which 
activate them.  However, reflectors can change monitors, which 
monitors themselves cannot do, and this is clearly a different kind of 
process from changing a reasoner or a belief.

At this stage, we are merely trying to distinguish various 
processes which have been conflated and provide a framework for 
defining them.  It must remain questionable whether dialogues such 
as the above could be unravelled sufficiently for specific reflectors, 
monitors, and so on to be expressed in a computationally manageable 
form.  Protocols of students using systems such as AlgebaLand show 
that most of the discussion is at the belief and reasoner levels, despite 
the fact that such environments have been specifically designed to 
promote reflective and monitoring activities.  If an environment 
had some explicit understanding of the upper levels then it would 
be more likely that it could at least make appropriate instructional 
interventions to provoke the desired activities.

As each new level is introduced, the discussions of the lower 
levels are echoed for that new level, although it gets progressively 
harder to give convincingly precise illustrations (at the top-most 
level, we are after all concerned with the purpose of life and other 

193

6.6.1    Reflective learning    193   



non-trivial matters).  For example, we may distinguish concrete and 
abstract reflectors, although we may suspect that not much that is 
concrete will float up to such levels.  Similarly, domain-specific and 
domain-independent reflectors may be defined, although the former 
may be uncommon.  Also, just as we considered monitors which were 
functions of the sets of reasoners and beliefs (rather than individual 
reasoners and beliefs), so we can consider reflectors which are 
functions of the set of monitors (rather than individual monitors).  
For example, a student who says “Whenever there are very many 
things that I could do I never know what to do” is commenting on 
the absence of a suitable monitor.

The way in which control is shared among the levels cannot be 
pre-determined, because it must depend on the nature of the problem 
and indeed of the agent (some agents are more impulsive, others 
more reflective, for example).  We imagine that most of the time 
an agent is applying reasoners, under the guidance of monitors, 
to derive new beliefs, and that occasionally the lower levels will 
set ‘triggers’ (perhaps corresponding to verbalisations such as “I 
am confused”, “Why am I doing this?”, “I have finished”, “That 
took much too long”) which may be detected and acted upon by 
appropriate reflectors.

A version of this four-level framework was given the ridiculous 
acronym of Dormorbile (for DOmain, Reasoning, MOnitoring and 
Reflection Basis for Intelligent Learning Environments), in honour 
of the Dormobile Company which went bankrupt in 1994 after thirty 
years’ production of the fondly remembered dormobile, a van-cum-
bedroom-cum-house (Self, 1995).

6.6.2 Self-explanation

A reflective activity which has recently been emphasised, because it 
is one of the few which has been empirically shown to have learning 
benefits, is that of self-explanation (Chi, Bassok, Lewis, Reimann 
and Glaser, 1989).  When students were presented with example 

194    Computational Mathetics



problems with solutions it was found that students previously 
identified as good problem-solvers produced more explanations of 
the examples to themselves and more reliably assessed their own 
understanding than poor problem-solvers.

An example is invariably incomplete - in our terms, it does not 
indicate all the monitors, reasoners and beliefs which were used 
to generate the solution, nor how these various components were 
combined to generate the solution.  Generating a self-explanation 
involves the application of a reflector which attempts to fill in those 
gaps (by identifying the missing components or specifying how 
they relate to one another) or at least to recognise the existence of 
the gaps.  It seems entirely reasonable that such an activity would 
improve subsequent problem-solving performance, at least on 
similar problems.

As the process of self-explanation is considered beneficial, it is 
natural to wonder if it can be taught.  Bielaczyc, Pirolli and Brown 
(1993) describe an experiment which involved students explaining to 
themselves someone else’s solution attempt and a teacher overseeing 
this process and intervening when necessary to clarify what is meant 
by an explanation.  The main focus then is on Reflectors(s), the 
student’s processes that reflect on a problem solution.  The teacher 
is engaged in a fifth level, which oversees and is intended to change 
the student’s reflective processes.

We can anticipate that some examples will be better than others 
(depending on the student involved) at generating productive self-
explanations.  Almost complete examples leave little to explain; 
very brief examples leave too much to explain; and for intermediate 
examples, some gaps are likely to be more productive than others.  
Moreover, the mode of presentation of the example can have an effect.  
For example, Wilkin (1994) shows that the benefits of diagrammatic 
reasoning (discussed in section 5.8) can be counterproductive in 
causing poor learners to rely on diagrammatic features of example 
diagrams rather than generating conceptual self-explanations.

6.6.2    Self-explanation    195   



6.7 Transfer

As metacognition concerns partly domain-independent skills, 
it seems to be intimately related with the contentious topic of 

transfer - “the degree to which a behaviour is repeated in a new 
situation” (Detterman, 1993).  Thousands of psychological studies 
of transfer have led to a conclusion that “there has been no positive 
evidence of general transfer besides a few highly questionable 
studies” (Singley and Anderson, 1989) - a conclusion which seems 
to invalidate a fundamental premise of the modern educational 
system, that behaviour learned in classrooms will transfer to the 
world outside classrooms.

We can illustrate the issues by briefly reviewing a study of 
transfer by White (1993).  A curriculum was devised around a 
series of computer microworlds concerned with how forces affect 
the motion of objects (briefly mentioned in section 2.2.3).  Typical 
computer-based activities involved students applying impulses to 
screen objects to produce a desired motion.  Subsequently, students 
were asked (among other things) to solve a ‘transfer task’: “Suppose 
that we have two identical rivers with two identical boats trying to 
cross those rivers.  The only difference is that one river has a current 
flowing and the other does not.  Both boats have the same motors and 
leave at the same time.  Which boat gets to the other side first?”  The 
experimental subjects did as well as high school physics students 
(six years older) and better than high school students who had not 
yet taken their physics course.

Assuming for the moment that transfer does in fact occur, the 
prevalent view of how it occurs is as follows.  A student learns a 
representation r1 for mediating behaviour in the initial situation t1.  
In a new situation t2 transfer will occur if either r1 can be used 
to behave in the new situation or if r1 can be adapted to a new 
representation r2 (on the basis of the differences between t1 and t2) 
suitable for t2.  In the first case, r1 must be sufficiently abstract that 
it may support behaviour in both situations, assuming the situations 

196    Computational Mathetics



are significantly different.  In the second case, the student must have 
mechanisms for adapting her representations.  In both cases, the 
student must realise that the first situation is relevant to the second.  
Various theories adopt different versions of this view, using, for 
example, different representations such as schemata (Reed, 1993) 
and production systems (Singley and Anderson, 1989).  Such a 
view has been implicit in our development of various schemata for 
reasoners, monitors and reflectors.

However, doubts about the occurrence of transfer follow directly 
from the definition above: how new does a situation have to be to 
count as new?, and how close does behaviour have to be to count 
as a repetition?  In the experiment described above, for example, to 
what degree is the river crossing problem a new problem?  These 
loopholes allow doubters to assert that “studies that claim transfer 
often tell subjects to transfer or use a ‘trick’ to call the subject’s 
attention to the similarity of the two problems” (Detterman, 1993).  
From the point of view of the student, the use of such hints or tricks is 
not surprising - after all, when they come to the situation t2 they have 
literally thousands of preceding situations which might be relevant, 
not just the t1 which might seem obvious to an experimenter.

If transfer is rare then this is clearly a challenge for education.  
We might conclude, as Detterman (1993) does, that as transfer does 
not occur we must teach students ‘the facts’, that is, teach them 
directly what we want them to learn.  We will refrain from entering 
the realms of emotional educational philosophy.  Interestingly, the 
same starting point (the empirical observation that transfer is difficult 
to achieve) is also the basis for the radically different philosophy of 
situated learning and cognitive apprenticeship, which places issues 
of metacognition and transfer at its core.  

At first glance, the notion of transfer presents a paradox for 
situated cognition, for if internal representations are denied then 
what is there to transfer?  Brown, Collins and Duguid (1988) argue 
that “a situated theory of knowledge challenges the widely held 
belief that the abstraction of knowledge from situations is the key 

6.7    Transfer    197   



to transferability” but give no clear alternative view.  Greeno, Smith 
and Moore (1993) discuss the ‘transfer of situated learning’ in a 
chapter three times longer than any other chapter in a book on transfer 
(Detterman and Sternberg, 1993).  Clearly, the issue is complex and 
so it will be safer to give Greeno et al’s own conclusions.  In their 
view, 

“Symbolic cognitive representations can play an important role in 
transfer, but they are considered as instrumental parts of the activities 
that occur in the initial learning and transfer situations, rather than being 
fundamental and ubiquitous ... Our focus is on activities rather than 
representations.  Transfer, in this view, depends on transformations 
of activity and is enabled by structural invariance in the interactions 
of agents in situations; these interactions can be described as action 
schemata, referring to the organizing principle of the activity rather 
than to symbolic cognitive representations.”

Vera and Simon (1993), however, conclude that although transfer 
“is a fundamentally important problem, which calls for continuing 
and expanded study [it] has nothing to do with the adequacy of 
symbolic systems as theories of intelligent action, in schools or in the 
real world.”

The topic of transfer is a good illustration of the approach of 
computational mathetics, which is (or should be) completely neutral 
with respect to the above arguments.  Whether transfer occurs or 
not is a matter for psychomathetics.  The educational implications 
of whatever degree of transfer exists is a matter for educational 
mathetics.  

Computational mathetics is concerned with saying as precisely 
as possible whatever needs to be said about transfer, so that it may be 
applied to the design of AI-ED systems.  It is apparently conceded by 
situationists that symbolic representations have some role in transfer, 
so the framework we have developed need not be discarded yet.  The 
computational mathetics question is how the new concepts that are 
introduced can be represented - bearing in mind that these would be 
representations for our and our systems’ benefit, not representations 
of any kind of psychological reality.  

198    Computational Mathetics



What precisely, then, are these ‘action schemata’ that Greeno, 
Smith and Moore (1993) mention, referring to the “organizing 
principle of the activity”?  Previously, we included ‘problem-specific 
beliefs’ among the set of beliefs.  These include beliefs about the 
problem situation (in short, the ‘situation’) and the problem states 
reached and operators applied during problem-solving (in short, the 
‘actions’).  Making no assumptions about how these are represented 
and remembering that this is an ascription (by us) to an agent, so 
that, for example, the situation is our ascription to the agent of how 
it views the situation and not a representation of how the situation 
objectively is, we may also separate them out, if we wish:
reflectors: { ref1: condition → refine(m1), ...    
  monitors: { m1: Has-brackets(exp) →  
      remove-brackets(exp), 
        m2: More-complex(exp) →  
      abandon-path, ... 
  reasoners: { remove-brackets: ..., ... 
     beliefs: { Y*(Y-3)+5*(Y-3)=0, ... }  
     actions: ... 
   situation: ... 
    goals: ... 
    plans: ... } } } 
If the situated learning view is (simply) that, in some cases, transfer 
is mediated by action schemata rather than any other schemata, then 
there appears to be little problem in conceding that.  The challenge 
is to define ways of representing the action schemata so that notions 
which Greeno et al discuss, such as invariance and affordance, can be 
made sufficiently precise that an AI-ED system could, in principle, 
reason about situations and actions to make decisions concerning 
transfer.  If it is argued that actions and situations should not be 
represented in a rigorous form but discussed in long non-technical 
papers then that is just a methodological preference.  If it is argued, 
as no doubt it is, that they are much more subtle concepts than the 
above indicates then there is even more reason for trying to say 
precisely how.

6.7    Transfer    199   



6.8 Distributed metacognition

Teasley and Roschelle (1993) present an analysis of a case study 
of two students engaged in the “collaborative construction of 

new problem-solving knowledge.”  The students’ task is to adjust 
two vectors (denoting initial velocity and acceleration) so that a 
simulation replicates a target motion.  The main theoretical concept 
used in the analysis is that of a Joint Problem Space (JPS).  The 
JPS is a “shared knowledge structure that supports problem-solving 
activity by integrating (a) goals, (b) descriptions of the current 
problem state, (c) awareness of available problem-solving actions, 
and (d) associations that relate goals, features of the current problem 
state, and available actions.”

Collaborative problem-solving is considered to involve jointly 
constructing a JPS.  Conversation between collaborators is concerned 
with constructing and maintaining a JPS, that is, with introducing 
and accepting knowledge into the JPS, with monitoring for 
divergences in meaning, and with repairing divergences that impede 
the collaboration.  Collaborators are aiming for some convergence 
of meaning and a knowledge structure able to support problem-
solving.  Actually, it is noted that this process is not continual as 
collaborative problem-solving involves periods where partners are 
disengaged, perhaps while one partner is thinking about ideas too 
ill-formed to introduce into shared work.

Teasley and Roschelle (1993) discuss the role of discourse in 
mediating collaboration but give few details of the JPS.  The only 
non-natural language descriptions of this knowledge structure are 
two ‘socially-distributed productions’, that is, productions whose 
content is developed by the partners in stages:
 If the Goal is to adjust the initial speed and  
  the speed 'going up' is too slow 
  then make the velocity vector bigger. 
 If the Goal is to adjust the initial speed and  
  the initial dot spacing is greater 
  then make the velocity vector longer. 

200    Computational Mathetics



The JPS appears to be a version of the concept of common knowledge 
as developed in distributed AI (section 4.7).  A proposition in the 
JPS is believed by both partners, and believed by both partners to 
be believed by the other, and so on.  If we denote the two partners 
by p1 and p2 and consider the JPS to be a ‘virtual agent’ jps, then 
collaborative problem-solving is considered to involve the partners 
comparing Asc(p1,jps) with Asc(p1,p1), and Asc(p2,jps) with 
Asc(p2,p2), respectively, that is, with comparing what they consider 
to be joint beliefs with their own beliefs.  An ascription to jps makes 
the philosophical point that joint goals cannot be analysed solely in 
terms of individual goals and beliefs.  A joint goal is held by both (or 
all) partners and is mutually believed to be a joint goal.

Teasley and Roschelle appear doubtful of the need or feasibility 
of developing a precise description of the contents of the JPS, 
because of the subtleties of natural language collaborative discourse, 
the complex nature of its integration with on-screen activity, and the 
fact that students bring idiosyncratic conceptual knowledge which 
may not correspond to any representation.  Instead, they use the 
JPS notion as a ‘conceptual resource’ for them to understand how 
students collaborate and do not attempt to incorporate it within their 
system (the Envisioning Machine, EM) to enable it to have any such 
understanding.  There is no JPS on screen for the students to work 
with.  Thus, although Teasley and Roschelle discuss the benefits of 
EM as a mediator of collaboration - namely, that it provides a means 
of disambiguating natural language and resolving impasses and that 
its display invites and constrains students’ interpretations - in fact, 
EM is more a conduit for collaboration than a mediator of it.  The 
dictionary definition of ‘to mediate’ is ‘to intervene in order to bring 
about agreement’ and EM makes no such interventions as it has no 
understanding which would enable it to.

At this stage, it is an open question whether the aim of 
computational mathetics for precision will not only improve our 
conceptual resources but also enable systems themselves to reason 
appropriately to determine interventions, in this case, to promote 

6.8    Distributed metacognition    201   



collaborative learning.  It is at least plausible that some on-screen 
representation of the JPS would be useful.  It might enable students 
to state more clearly what they believe to be in the JPS and so reduce 
ambiguities.  It might also enable the system to monitor the contents 
of the JPS, for example, to check that the JPS is consistent with 
observations.  It might detect vagueness or incompleteness in the JPS.  
For example, it could wonder about the difference, if any, between 
bigger and longer in the two socially-distributed productions 
given above.  As always, it is a separate question as to what kind of 
intervention might be appropriate in such a circumstance.

Interestingly, most related formal AI has concerned the specific 
problem of collaborative planning, though plans are not mentioned 
as parts of a JPS.  This work attempts to distinguish carefully 
between situations where two (or more) agents have their own plans 
for achieving either a shared goal or their own goals.  The agents 
need to coordinate the components of their plans to achieve the joint 
goal or all goals (if possible).  

The possible roles of a mediator need also to be defined.  The 
mediator may be one of the problem-solving agents or an extra 
agent specifically given the task of overseeing the coordinated 
planning activity.  In either case, the mediator’s ability depends 
on its knowledge of the other agents’ goals and plans (and of their 
knowledge of each other’s goals and plans), and also on its knowledge 
of the beliefs and knowledge from which these goals and plans have 
been derived, because a successful mediation will probably involve 
consideration of the grounds for any proposed action.  In addition, 
any formalisation of collaborative activity needs to take account of 
the different nature of agents - human or computer-based - as they 
have different capabilities for rationality, reliability, self-centredness, 
and so on.

Grosz and Kraus (1993) present a formulation of collaborative 
planning derived from Pollack’s model of individual planning and 
using the modal operators of intentionality of Cohen and Levesque 
(1990a), discussed in section 6.4.  They also introduce the notion of 

202    Computational Mathetics



a ‘potential intention’, that is, an intention an agent is considering 
adopting but to which it is not yet committed.  Wooldridge and 
Jennings (1994b) develop a formalisation based on the concepts of 
commitment and convention, the latter being a specification of the 
conditions under which a commitment might be abandoned and how 
an agent should behave in such a circumstance (and is a kind of 
monitor, in our terms).  

The notational details are too complex for our purposes here.  
Let us just summarise some of the questions that might need to 
be considered when developing a formalisation adequate for the 
purposes of computational mathetics:

To what extent do agents actually have (complete) plans and are • 
these plans known to other agents?
Assuming that plans are carried out by actions, to what extent do • 
the agents have an agreed understanding of these actions?  Can 
they communicate with each other about the actions?
What kinds of negotiation are possible between agents?  Are • 
there, for example, any ‘social laws’ which prevent any one 
agent being delegated an unfair share of activity to carry out?
Can the problem-solving activity be devolved into independent, • 
concurrent activities, so that the activity is more one of 
cooperation than collaboration?
Are the mediating interventions (if any) directed solely towards • 
solving a specific problem, or may they relate to longer-term 
learning benefits?

6.9 Attributes, aptitudes and attitudes

Until recently, AI-ED research has tended to emphasise the 
role of knowledge, implicitly agreeing with Chi, Glaser and 

Rees (1982) that students’ difficulties “can be attributed mainly to 
inadequacies of their knowledge base and not to limitations in either 
the architecture of their cognitive systems or processing capabilities.”  
Now, there is more attention on cognitive and metacognitive 

6.8    Distributed metacognition    203   



processes, some of which may not be related to knowledge per se 
but to more or less intrinsic characteristics of the individual learner.  
Some researchers have argued that an AI-ED system needs to be 
aware of such characteristics in order to provide individualised 
learning experiences.  Our problem, from a computational mathetics 
perspective, is to determine how to represent those characteristics 
which AI-ED systems need to be aware of.

Folk psychology suggests a wide range of possibly relevant 
characteristics: individuals might be described as persistent, 
compulsive, systematic, sagacious, and so on, but not all adjectives 
(for example, greedy, fragrant, devout) need feature in a dictionary of 
computational mathetics.  However, the huge literature on individual 
differences has generally been rather sceptical of the prospect of 
reliably identifying and adapting to such differences (Corno and 
Snow, 1986).  Nevertheless, let us try to disentangle the kinds of 
characteristic which might be involved and speculate on how they 
might be handled within computational mathetics.

Agent-oriented programming is not intrinsically opposed to the 
notion of ‘characteristics’ despite the previous focus on the role of 
knowledge or belief and how it is processed.  An agent is considered 
to possess ‘attitudinal states’ (such as wants, intentions, and likes) 
and to pursue its activities in the light of those attitudes.  Just as 
it is useful to ascribe knowledge to an agent, so it may be useful 
to ascribe characteristics (if, for example, it enables predictions of 
the behaviour of the agent or enables some other agent, such as an 
AI-ED system, to adapt to that agent).  There is no conflict with the 
spirit of agent theories - though there is considerable difficulty in 
integrating the ideas satisfactorily.

A characteristic (such as ‘persistent’) is not the kind of thing 
which can be incorporated within any of our levels.  Rather, it is 
a label which describes the content of such levels.  Therefore, we 
will, as anticipated in section 6.3, say that an agent a which has been 
given the ascription Asc(a) may be ascribed the characteristic c if 
some associated boolean function C is true if applied to Asc(a).  For 

204    Computational Mathetics



example, the boolean function associated with persistent might 
return true if no monitor contains abandon-path.  We will attach 
such a property to the highest level in our nested framework to which 
the associated function refers, for example:
reflectors: { [reflective, ...] 
     ref1: condition → refine(m1), ...    
  monitors: { [persistent, ...] 
      m1: Has-brackets(exp) →  
      remove-brackets(exp), 
        m2: More-complex(exp) →  
      abandon-path, ... 
  reasoners: { [irrational, ...] 
       remove-brackets: ..., ... 
     beliefs: { [unix-expert], ...] 
        Y*(Y-3)+5*(Y-3)=0, ... }  
     actions: ... 
   situation: ... 
    goals: ... 
    plans: ... } } } 
This notation is intended to indicate that an observer has made an 
ascription such that Unix-expert(a), Irrational(a), and so on 
are considered to hold.

Once such a definition is proposed it becomes, as is the style in 
computational mathetics, a challenge for precision.  For example, is 
someone a unix-expert only on the basis of what they know but does 
the label imply some expertise in using that knowledge?  Would 
‘fuzzy functions’, returning a value in the range 0 to 1, be better 
than boolean functions?  Maybe, whatever precision is needed will 
evolve from such computational descriptions rather than through the 
informal educational and psychological literature, where such terms 
are used as though it is obvious what they mean.  

Formal definitions of terms such as ‘narrow-minded’, ‘arrogant’, 
‘compulsively reflective’, ‘persistent’, ‘cooperative’, ‘gullible’, and 
so on already exist in the AI literature.  Such terms are used (perhaps 
semi-seriously) without any psychological claims, but at least they 
provide a benchmark against which educational psychologists can 
try to define their own terms when they use them.

6.9    Attributes, aptitudes and attitudes    205   



Before considering particular kinds of characteristic, some general 
points can be made.  First, from the point of view of implementation, 
it is hard to imagine an AI-ED system continually reapplying a large 
number of such functions every time some behaviour occurs in 
order to determine if any have become true.  Rather, we imagine 
such ascriptions to be ‘interrupt-driven’, that is, to be initiated 
by relatively simple-to-evaluate ‘trigger functions’ which detect 
particular events and directly cause the ascription or provoke some 
more lengthy analysis.  For example, if a student is detected to use 
the unix command ‘grep’ then she might be immediately ascribed 
the property unix-expert.

There must be some ‘payoff’ from making such an ascription, 
and this may be of two kinds.  First, the ascription usually allows 
a large number of inferences to be drawn.  For example, once a 
student is labelled as a unix-expert, then she may be assumed to 
know a great many things about Unix.  Obviously, these inferences 
are default assumptions (section 5.3).  Secondly, the ascription may 
play a role in the system’s instructional strategy.  For example, it 
may well be more convenient to have a rule of the form ‘if student is 
a unix-expert then ...’ than a complicated rule in terms of the beliefs 
ascribed to the student.

The permanence or otherwise of such ascriptions differs:
some characteristics (such as knowledge of a particular law of • 
physics) are transient and it may be the AI-ED system’s aim to 
change them, 
some (for example, blindness) may be permanent but • 
nonetheless of pedagogic concern if not focus, 
some (such as the status of being a unix-expert) seem to be long-• 
term once acquired, 
some (for example, persistence) it may be only implicitly part of • 
the system’s aim to change,
some (for example, anxiety) may be situation-dependent.  • 

The value of relatively permanent characteristics may be determined 
off-line, through psychological tests.  On-line interrogation 

206    Computational Mathetics



concerning characteristics is likely to be of little use.  The on-line 
assignment of student characteristics on the basis of a particular 
event (or series of events) can be problematic.  Overall, there is a 
difficult problem in keeping an ascription of characteristics in line 
with observations.  In section 7.2 we will consider the problem of 
‘belief revision’, which, as the term suggests, is concerned with the 
revision of the beliefs components, but so far very little work has 
been done on the revision of other components.

6.9.1 Stereotypes

The stereotype is one of the most common kinds of characteristic 
to be ascribed to agents (Rich, 1989; Hustadt, 1994; Kay, 1994).  
An agent ascribed a particular stereotype may also be ascribed 
various other mental components, either by definition or by default.  
Normally, the stereotypes are arranged into a hierarchical structure 
(such as Figure 6.2), which permits the inheritance of properties.  
A set of propositions is associated with each node, representing a 
stereotype, such that if the agent is ascribed that stereotype then it 
is also ascribed those propositions, together with those propositions 
attached to any encompassing stereotypes.  

 
any fool

investor

stock 
novice

stock 
expert

bond 
expert 

investment 
expert

computer 
user

applications 
user

applications 
developer

systems 
programmer

ILE 
designer

spreadsheet 
designer

C 
expert

Unix 
expert  

 

 
Figure 6.2.  A stereptype hierarchy

6.9    Attributes, aptitudes and attitudes    207   



We might also assume that the agent should not be ascribed 
those propositions attached to sub-stereotypes.  In general, an agent 
may be assigned to stereotypes along several dimensions, leading 
to the possibility of inconsistencies in the default assumptions.  In 
the absence of information about the agent, it might be assigned 
to the ‘any fool’ stereotype, such that it is assumed to believe only 
those things which any fool believes, that is, so-called common 
knowledge.  

As with other ascriptions, stereotypes may be ascribed by one 
agent to another, to any depth, for example, 

B(Hansel,B(mother,gullible(Hansel))) 
Also, we can imagine the need to ascribe stereotypes to virtual agents 
denoting groups rather than individuals, as in the previous section:

B(Russia,B(China,decadent(USA))) 
As with other nested ascriptions, we need to be careful about 
the inferences we make.  The definition of a stereotype (such as 
decadent), the kinds of assumptions that follow, and the stereotype 
hierarchy might well differ from one agent to another.  In this case, 
we would need to ascribe all these components to agents as well, and 
not regard them as objectively given as ‘correct’.

At this point, it seems desirable to disassociate ourselves from the 
negative connotations of stereotypical reasoning for commonsense 
inference, which is a matter of its everyday use, not its formal 
properties.  Formally, stereotypical reasoning is just a version of 
default reasoning which endorses an unusually large number of 
default assumptions.

Stereotypes are useful for initialising user models generally, 
especially for systems which do not anticipate much subsequent 
change in the content of the models (which should not be the case 
for AI-ED contexts).  For student modelling, where the focus is on 
the subsequent dynamic tracking of changes in the user (or student), 
stereotypes are not of much use beyond the initialisation stage 
because they do not permit the necessary fine-grained analysis.

208    Computational Mathetics



6.9.2 Aptitudes

Corno and Snow (1986) distinguish three kinds of aptitude which 
have a bearing on learning:

Cognitive aptitudes• , concerned with (prior) knowledge and 
intellectual abilities.  Many stereotypes are of this kind.
Affective aptitudes• , concerned with values, including issues of 
motivation, anxiety, autonomy, and self-concept.  These will be 
considered further in the next section.
Conative aptitudes• , concerned with wants, intentions, and, in the 
educational context, cognitive and learning styles.  
Many such styles have been studied, usually in terms of contrasts, 

such as holist/serialist, reflective/impulsive, and convergent/
divergent.  These attributes seem to refer to global properties (rather 
than the performance properties, as with cognitive attributes) of a 
meta-level of an ascription.  For example, a ‘holist’ style refers to the 
general strategy of the learning component.  Similarly, ‘reflective’ 
refers to the number and type of meta-level interruptions on the 
base-level problem-solving.  

It is probably conative aptitudes which believers in aptitude-
treatment interactions (Snow, 1990) are most optimistic of applying 
to AI-ED.  A representative study (although in fact there have been 
very few studies to represent) is reported by Shute (1993).  She 
focusses on two aptitudes, working memory capacity (WM) and 
general knowledge (GK), and two treatments, ‘constrained’ and 
‘extended’, which differed only in the number of problems presented 
to the learner.  The WM aptitude is related to the potential size of the 
various sets ascribed to the learner.  The GK aptitude is concerned with 
what we called ‘background knowledge’, knowledge not specific to 
a particular domain or problem.  Both aptitudes were measured by a 
battery of standard cognitive tests.  It was found that low-WM, high-
GK students learned more from the constrained environment, and 
that high-WM, low-GK students learned more from the extended 
environment.

6.9.2    Aptitudes    209   



6.9.3 Affects

The ‘affective dimension’, concerned with a student’s motivation, 
emotions, and feelings, is often described as though it were a 
dimension orthogonal to the ‘cognitive dimension’ which cognitive 
science, AI, AI-ED and computational mathetics tend to emphasise.  
AI-ED research is said to neglect the affective dimension, considered 
by many to be the more important of the two.  For example, Lepper, 
Woolverton, Mumme and Gurtner (1993) write that 

“Implicit in the design of many current computer tutors is a conception 
of the tutoring process derived from a purely cognitive analysis of 
teaching ... issues of student affect, motivation, and attention are 
simply not considered in such models.”

This criticism is apparently valid but nonetheless odd.  On the 
one hand, critics deny the need for the kinds of detailed, explicit 
representations of domain and pedagogical knowledge which AI-
ED researchers try to develop, arguing that a suitably designed 
environment can behave appropriately with only implicit knowledge, 
but, on the other hand, they criticise AI-ED designers for not explicitly 
considering and representing motivation and other affects without 
allowing that AI-ED systems might, through their behaviour, exhibit 
an adequate implicit knowledge of such factors.  After all, there are 
many tales of students astonishing teachers with their enthusiasm for 
voluntarily using systems (AI-ED and otherwise) where neither the 
designers nor the systems themselves explicitly considered issues 
such as motivation.

Nevertheless, the challenge to be explicit about affective factors 
is well worth facing, if only to try to clarify the bountiful literature on 
the topic.  Lepper et al (1993) consider that the four major affective 
goals (confidence, challenge, control, curiosity) are:

to enhance the learner’s level of confidence;• 
to produce an appropriate level of challenge for the learner;• 
to maintain in the learner a sense of personal control;• 
to elicit from the learner a high level of curiosity.• 

210    Computational Mathetics



It is interesting that these goals are expressed as goals for a teacher 
with respect to a learner, rather than in terms of goals of a learner.  
Although the study of human tutors by McArthur, Stasz and 
Zmuidzinas (1990) led them to consider that “many tutorial actions 
appeared to fulfil a motivational function while also accomplishing 
some other [informational] purpose”, Lepper et al propose that a 
tutor needs two complementary diagnostic models, one cognitive 
and one affective.

Del Soldato and du Boulay (1995) take this recommendation 
literally.  Their system maintains two independent student models.  
The model of the student’s motivational state consists of three 
variables:

confidence - determined by whether the student succeeds or fails • 
with or without help, and whether she asks for help and accepts 
help offered;
effort - determined by the number of attempts to obtain a • 
solution;
independence - determined by the number and nature of tutor • 
interventions.

These variables are functions of the overt behaviour of the student 
and tutor, and not of any ascription to explain that behaviour, and so 
could be associated, as described above, with the actions component 
of our framework.  Clearly, a deeper analysis is possible, though 
maybe unnecessary.  For example, effort is presumably related to the 
persistent characteristic discussed above.

As with all the other aspects we have discussed, affective factors 
have two potential roles in computational mathetics: they might 
be needed to describe the agents involved, and they might also be 
needed because the problem which the student (and the system) 
is considering concerns those factors.  Elliott (1993) describes a 
training system designed to teach novice account executives how 
to sell telephone-book advertising.  It is assumed that solutions to 
such problems involve considering the effect that actions might have 
on the emotions of the people involved.  Clients are considered to 

6.9.3    Affects    211   



be of four personality types (dominant, political, steady and 
wary).  Eighty-six domain rules express how actions affect clients’ 
emotions, for example:
 If the seller takes charge with a dominant client 
  then the client will become angry   
Twenty-one ‘emotion types’ are identified, such as joy, distress, 
happy-for, gloating, and resentment.  Superficial though such 
an approach may seem, it was “successful in giving agents the 
ability to appraise situations so that their concerns led to emotions 
consistent with their intended personalities.”  However, it was “not 
well suited for representing dispositional behaviours rooted in more 
cognitive motivations.  A better solution would have to additionally 
integrate some representation of individuals’ long term planning ... 
strategies.”

212    Computational Mathetics



7

Learning

As learning is the intended outcome of using any AI-ED system, 
computational mathetics needs to help develop well-articulated 

theories of learning so that we and our systems may understand and 
perhaps predict those learning outcomes (or lack of them).  Perhaps, 
if a theory of learning is sufficiently precise, it may lead directly to 
a theory of instruction, that is, if a theory of learning can predict the 
potential learning outcomes from possible instructional actions, then 
a theory of instruction may select or generate actions which are in 
some way optimal (chapter 10).  Moreover, if a student learns, as is 
the intention, while using an AI-ED system, then a theory of learning 
will be needed to update any ascriptions to the learner.

The topic of learning has been a major field of psychology for 
over a century.  In AI, there has been a profusion of research on 
machine learning, with some researchers considering an ability to 
learn to be a necessary characteristic of any AI system.  Interestingly, 
the educational literature has relatively little discussion of learning, 
but even so there is a huge volume of work to try to relate to 
computational mathetics.

In previous chapters we have alluded to various learning 
processes.  In terms of our framework, we have reasoners changing 
beliefs, monitors changing reasoners and beliefs, reflectors changing 
monitors, reasoners and beliefs, and so on.  These changes are 
assumed to occur before, during or after problem-solving.  In some 
cases, for example, a reasoner changing the situation, we imagine 
the change to be relatively transient.  Such a change might not 
persist beyond the current problem.  Other changes, for example, 
a reflector changing a monitor, perhaps after lengthy consideration 

7    Learning    213   



of a problem-solving failure, we imagine to be more long-term: 
indeed, it appears to be the whole point of such a change to affect 
subsequent problem-solving.  Such a distinction is not clear-cut.  For 
example, an agent might well recall the details of a problem-solving 
situation when tackling a similar problem later (this is the basis for 
case-based learning, discussed below).

In addition to learning through problem-solving, almost as a side-
effect, we might view learning as problem-solving.  An agent might 
learn intentionally, through setting up a goal to learn.  Maybe this 
requires the consideration of a dual ‘problem space’, one devoted 
specifically to learning rather than to some other problem.  But not 
all learning is intentional.  Some learning occurs without awareness 
and incidentally to some other activity.  It is arguable whether this 
other activity can always be construed as a form of problem-solving.  
In so far as learning is intentional, then the agent regards it, like other 
metacognitive activities, as an investment.  It requires a commitment 
of cognitive resources in the hope of benefits in subsequent problem-
solving.  Of course, not all such intentions will be realised.  Indeed, 
we  might comment that, for students, real learning is quite rare and 
therefore a good model of human learning will perform as poorly as 
a learner.  We must also recognise, sadly, that some students have an 
intention not to learn: they prefer to meet some short-term goal such 
as completing an assignment while investing the minimum effort on 
any longer-term learning objectives.

As well as learning which involves changing the contents of the 
various mental ascriptions, there is also a form of learning which 
involves a kind of ‘sedimentation’ through the levels.  For example, 
an expert problem solver might have a reasoner corresponding to a 
‘macro-operator’ which a beginner might regard as several smaller 
operators to be applied in sequence with careful monitoring.  As 
experience is gathered, this monitor plus the smaller operators will 
coalesce into the macro-operator.  In our framework, the coalescing 
process would be defined as a reflector, operating on monitors and 
reasoners and producing a new reasoner.  This is a form of knowledge 

214    Computational Mathetics



compilation (Anderson, 1983), leading to more efficient problem-
solving.  

Within a level, we might not consider the vocabulary fixed.  For 
example, an agent might initially describe reasoners in terms of, say, 
specific simple arithmetic operations and then, in due course, learn 
concepts such as ‘commutative’, ‘exponential’, and so on, which 
enable the reasoners to be re-expressed.  Again, this may lead to an 
increase in the efficiency, but not the scope, of problem-solving.

In general, then, we might consider all learning to involve a form 
of (usually non-deductive) inference.  From what an agent already 
knows, it infers more, in order to improve later problem-solving.  
Generally, such inferences are nonmonotonic and not restricted to 
domain knowledge.  However, we should not regard learning as a 
monolithic process and assert that agents learn ‘by making mistakes’, 
‘by doing’, ‘from stories’, or any other single activity.  Agents learn 
different kinds of thing, at different times, by different processes 
and for different purposes.  Different kinds of agent (computer and 
human, specifically) have different learning capabilities, and for 
human agents these capabilities change with age and maybe with 
context and culture.

In this chapter, we will distinguish four types of learning, although 
as usual the boundaries are not clear-cut.  An agent may learn in three 
ways - directly from the environment (perceptual learning), by some 
internal cognitive process, or by communicating with other agents 
(social learning).  In the second case, we distinguish processes which 
involve an analysis of one or a few pieces of evidence (analytical 
learning) and those which involve some kind of induction over 
several or many pieces of evidence (inductive learning).

7.1 Perceptual learning

Philosophers and cognitive scientists have laboured to clarify how 
beliefs may be acquired through perception, with little help from 

AI researchers.  More than other forms of reasoning (considered 

7    Learning    215   



in chapter 5), perception is an unconscious process.  However, 
perception is not an automatic process but involves some form of 
reasoning, as is shown by the fact that what we come to believe 
through perception depends on what we already believe and on the 
conditions under which the perception is made.

Musto and Konolige (1993) attempt a formalization in terms of 
autoepistemic logic.  Their basic axiom is:
 Perceives(a,p) and  
  not B(a,Defeater(Perceives(a,p) → p)) → B(a,p) 
that is, if agent a perceives p then, provided a does not believe there is 
some ‘defeater’ of the inference, a believes p.  There are considered 
to be two classes of defeater of Perceives(a,p) → p, namely:

B(a,not p)• , that is, a already believes the negation of p.
B(a,Abnormal(p))• , that is, a believes that there is some abnormal 
condition under which p has been perceived.  For example, 
Perceives(a,Pink(elephant)) →  Pink(elephant)  

might be defeated by a belief that a is inebriated or that the elephant 
has been viewed in a vivid sunset.  They also propose the following 
causal rule:

p and not Abnormal(p) → Perceives(a,p) 
which is clearly an over-simplification, and a set of default rules to 
resolve conflicts between perceptions and memory or between two 
perceptions.  This formalisation has been applied to mobile robot 
perception but not to any AI-ED context.

7.2 Analytical learning 

Analytical learning methods involve the detailed analysis of a 
much smaller number of observations than inductive learning 

methods.  To facilitate such an analysis, analytical methods tend 
to be based more on the use of prior knowledge to explain and 
generalise from the observations.  Often what is learned is a deductive 
consequence of this prior knowledge. 
 

216    Computational Mathetics



7.2.1 Failure-driven learning

Many theories of learning, both in cognitive science and in machine 
learning, are based on the idea that learning is stimulated by some 
kind of ‘cognitive conflict’, that is, some mismatch between what 
is expected and what actually happens.  This ‘failure’ causes some 
change to avoid its repetition.

For example, the SOAR architecture (Laird, Rosenbloom and 
Newell, 1986) proposes that all human learning occurs through a 
process of ‘chunking’ after failure.  Whenever there is a problem-
solving impasse, SOAR enters a meta-level to overcome the difficulty.  
When the meta-level returns, a new rule is generated linking the 
impasse conditions with the remedy found.  Subsequently, whenever 
those conditions are encountered the new rule will apply without 
any resort to the meta-level.  SOAR’s learning ability has been made 
use of in a system mainly concerned with recognising student plans, 
discussed further in the next chapter (Hill and Johnson, 1995).

An impasse-based theory of learning which has been more 
influential in AI-ED research is repair theory and its successors 
(Brown and VanLehn, 1980; VanLehn, 1982, 1988, 1990).  The basic 
ideas and evolution of repair theory can be explained with respect to 
our framework:
reflectors: { ...    
  monitors: { m1: ..., 
        m2: ..., ..., 
      impasse → change-situation and 
     generate-patch, ... 
  reasoners: { p1: ...,  
       p2: ..., ... 
       patch1: ..., 
       patch2: ..., ... 
     beliefs: ...  
     actions: ... 
   situation: ... 
    goals: ... 
    plans: ...  } } }

7.2.1    Failure-driven learning    217   



A student is assumed to apply productions (p1,  p2, ...) under 
the control of monitors (m1, m2, ...) to change the beliefs, situation, 
and so on.  When an impasse is reached, that is, no productions 
are applicable, a ‘repair’ makes changes so that problem-solving 
may continue.  The repair mechanism is supposed to be domain-
independent and to cause only small changes.  In the first version of 
the theory, the problem-solving productions were to be unchanged.  
Consequently, as nothing has been learned, the same impasse will 
be reached in similar situations.  Some indeterminacy in the repair 
heuristics may lead to a different repair, causing ‘bug migration’, 
the prediction and subsequent detection of which was considered to 
provide strong support for the theory (VanLehn, 1988).  

However, as some stable bugs are manifested, it became necessary 
to postulate that the repair mechanism generates ‘patches’, that is, 
simple impasse-repair pairs which (as with SOAR) are added to the 
set of productions and are henceforth applied in similar impasse 
situations.  The productions and the patches were considered to be 
two distinct types of reasoner, the latter being relatively abstract (so 
that they applied to multiple occurrences of an impasse) and operating 
only on the situation.  Eventually, however, this distinction came 
to be seen as unprincipled and the reasoners were then considered 
to consist of rules and ‘malrules’ (Sleeman and Smith, 1981), the 
latter being identical in form to the rules but generating incorrect 
rather than correct answers.  Moreover, both rules and malrules 
were considered to be learned by the same mechanism, induction 
over teachers’ examples and incorrect examples produced by local 
problem-solving.  

7.2.2 Explanation-based learning

When an agent reasons to reach a conclusion which turns out to be 
wrong then it may reason about its reasoning process in order to 
determine where the difficulty lies and how to overcome it.  This is 
clearly a form of failure-driven learning.  However, such a reflective 

218    Computational Mathetics



process is not restricted to failures: an agent may reason about a 
derivation which led to a correct conclusion in order to streamline 
its subsequent application, by, for example, generalising incidental 
aspects of the context.  This process is called explanation-based 
learning and is, in our terms, a reflector, as it operates upon the 
problem-solving process.

Explanation-based learning is a technique for improving the 
efficiency of problem-solving.  It begins with a derivation (an 
explanation) obtained during problem-solving, generalises it, and 
records the generalisation as a new ‘lemma’ for problem-solving.  It 
is intended to improve the speed, not the scope, of problem-solving.  
As such, it appears to be the kind of reflective activity which users of 
systems such as AlgebraLand are intended to engage in. 

 It requires the specification (Mitchell et al, 1986) of:
a goal;• 
the training example (an instance to be explained);• 
a complete domain theory (facts and rules);• 
an operationality criterion (specifying the form in which the • 
generalisation is to be expressed).

The process involves (1) generating a proof tree, (2) back-propagating 
and substituting variables, where possible, for constants, and (3) 
expressing the goal as a conjunct of proof tree leaves.

Expressed in these terms, explanation-based learning is very 
similar to the technique of goal regression in logic programming 
(Nilsson, 1980).  Dejong and Mooney (1986) give a rather less 
rigorous characterisation of a version of explanation-based learning 
intended to enable learning from a story (such as the Australian 
aboriginals’ brolga story, in section 1.1).  ‘Explanatory schemata’ are 
to be developed through a set of mechanisms, such as composition 
(merging two schemata) and volitionalization (adding an agent to 
an agent-less schema).  Subsequently there has been a huge amount 
of work on clarifying distinctions between different descriptions of 
explanation-based learning, relaxing some of the formal requirements, 
and integrating the method with inductive techniques.

7.2.2    Explanation-based learning    219   



Of particular relevance to computational mathetics is the relation 
between explanation-based learning and self-explanation.  It is 
a premise, or at least a hope, of writers that students can learn by 
determining why a single example is an instance of a concept.  For 
example, from Clocksin and Mellish (1981):

“The goal var(X) succeeds if X is currently an uninstantiated variable.  
Here is an example ...
really_in(W,List) :- var(List), !, fail. 
really_in(W,[W|_]). 
really_in(W,[_|List]) :- really_in(W,List).”

To explain this example to oneself in order to understand the ‘var’ 
concept, a considerable domain theory is required, as those unfamiliar 
with Prolog will appreciate.  On the basis of this one example there 
is plenty of scope for over- or under-generalising the concept.

It certainly seems plausible that learners will benefit from 
endeavouring to generate and generalise such explanations.  However, 
from an instructional perspective, the process seems risky, as learners’ 
knowledge of prerequisite concepts (such as uninstantiated, !, fail, 
and so on) may be shaky.  In practice, of course, such instruction is 
often integrated with other methods, for example, those which may 
lead to inductive learning.

Cascade (VanLehn, Jones and Chi, 1992) is a computer simulation 
of self-explanation using a method for resolving impasses and 
learning new rules called ‘explanation-based learning of correctness’.  
Given a problem such as that shown in Figure 7.1 and an example 
solution, Cascade attempts to explain each line of the solution.  For 
example, the line

Fax = -Fa cos 30° 
is converted into an internal form:
 projection(force(knot,string_A),axis(knot,x,0)) =  
  -1 * magnitude(force(knot,string_A)) * 
  apply(cos,30) 
which is then proved using Prolog rules such as:
 constraint(projection(V,A)= 
  sign(proj(V,A))*magnitude(V)* 

220    Computational Mathetics



  trigfn(proj(V,A))) :- 
   instance(V,vector),instance(A,axis), 
   origin(A,O),vertex(V,O). 
The proof generates a set of ‘derivational tuples’ which records the 
values derived and the rules used to derive them in order to facilitate 
subsequent analogies. If a proof fails, then Cascade tries to use an 
overly general rule, such as

constraint(sign(P(X,Y))=sign(Q(X,Y))) :- true. 
and, if this overcomes the impasse, creates a specialization of it by 
instantiating the rule and then substituting variables for problem-
specific constants, to create, for example:
 constraint(sign(proj(force(K,S),axis(K,x,R)))= 
 sign(nearest_half_axis( 
  force(K,S),axis(K,x,R)))) :- true. 

7.2.3 Analogy

Computational experiments showed that Cascade’s explanation-
based learning technique for overcoming impasses was insufficient 
in itself to account for students’ behaviour during problem-solving.  
If missing knowledge is required to solve a problem then there are 

 
Problem: Figure a shows an object of weight W hung by strings.  Consider the 
knot at the junction of the three strings to be "the body".  The body remains at 
rest under the action of the three forces shown in figure b.  Suppose we are 
given the magnitude of one of these forces.  How can we find the magnitude of 
the other forces?

30 45

30 45

y

x

FbFa

Fc
Figure a Figure b

 
 

 Figure 7.1.  A physics example

7.2.2    Explanation-based learning    221   



simply too many impasses encountered for a student to know which 
it is profitable to repair (naively, one might predict that, because 
learning occurs at impasses, the more impasses the better).  During 
learning from an example, however, as the solution path is strongly 
constrained, only a few impasses will be met and resolving those 
will probably lead to a solution.  

Therefore a second mechanism, analogical search control, was 
introduced to enable the system to use derivations produced while 
explaining examples to constrain its generation of derivations 
during problem-solving.  If Cascade cannot derive a result then it 
just assumes the example is correct and builds a rule which enables 
analogies to this assumption.  For example, if Cascade cannot 
prove that ‘a knot can be a body’ it forms a rule that says ‘In similar 
problems choose the knot as a body’.  Cascade’s mechanism is a 
particular version of the general method of derivational analogy 
(Carbonell 1986) which is analysed and empirically examined in 
Blumenthal and Porter (1994).

Anderson, Boyle, Corbett and Lewis (1990) consider that “the 
major way that students solve problems involving concepts is by 
analogy to examples of solutions involving those concepts.”  In 
fact, their theory of learning underlying the design of the so-called 
ACT* tutors has no inductive learning mechanisms, unlike ACT* 
itself.  Therefore, the proclaimed success of the tutors is attributed to 
the principles (section 3.5) derived from ACT*, even though it was 
not fully adopted, and the necessary changes to the theory can be 
considered a “profitable flow of influence .. between the theory and 
the application” (a heads we win, tails we win outcome).

Advocates of case-based reasoning, a form of analogical 
reasoning where old solutions are mapped to solve new problems, 
see a clear link to an instructional principle - because students learn 
from cases, tutors should give them cases which they will recall: 
“good teaching is good story telling” (Schank, 1990).  Case-based 
teaching software should aim to “place students in situations they 
find interesting, where the telling of a story would be appreciated.”  

222    Computational Mathetics



In case-based teaching, “the teacher knows what stories it has to 
tell and sits waiting, ready to pounce on the situation a student has 
encountered with an appropriate story.”

Kolodner (1991) describes a system which uses a case base of 
600 battles to instruct students on battle management.  Technically, 
the difficult questions concern how to index the cases so that 
appropriate ones may be retrieved and how to specify what an agent 
might learn from attending to such a case.  Also, if the case is not to 
be presented verbatim, techniques need to be developed to adapt the 
case to the context.  Slade (1991) reviews techniques for indexing, 
retrieving and adapting cases in case-based reasoning.

Of course, the cases may be organised into a ‘curriculum’ as 
in the tutor described by Murray, Schultz, Brown and Clement 
(1990) which focusses on using analogy to remediate physics 
misconceptions.  The student is led to reflect on a target situation 
(such as “Does a table exert a force on a book resting on it?”) by 
being presented analogous situations (such as “If you hold a textbook 
is there a force up on the book?”).  The bridging analogies and the 
paths between them are pre-defined but the particular ones presented 
depend upon the answers given.  The student is asked to explain 
answers to herself, not to the system.

7.2.4 Conceptual change and belief revision

The design of the analogy-based physics tutor of Murray et al (1990) 
and, more generally, the field of conceptual change in educational 
psychology (Caravita and Hallden, 1994; Chinn and Brewer, 1993; 
Vosniadou, 1992; White, 1993) recognises the difficulty of overcoming 
certain entrenched misconceptions.  For example, Bereiter and 
Scardamalia (1989) report children’s attempts to reconcile a study 
text statement such as “Harmful germs are not trying to be bad when 
they settle down in your body.  They just want to live quietly, eat, 
and make more germs” with their previous conception of germs as 
aggressors, as depicted in television commercials.

7.2.3    Analogy    223   



White’s ThinkerTools project (White, 1993), discussed in section 
6.7, aims to facilitate conceptual change to displace misconceptions 
which several studies have shown are very resistant to change 
through normal physics courses.  In fact, as most conceptual change 
studies have been concerned with overcoming naive conceptions of 
science which are similar to theories of earlier scientists (such as 
pre-Galilean astronomy and pre-Newtonian dynamics), the learner 
is often seen as a ‘scientist’, gathering observations and reconciling 
conflicts.  This is an analogy of questionable utility as the history of 
science shows that the evolution of scientific theories is a complex 
and not entirely rational process.  Moreover, conceptual change 
encompasses more than concepts in natural science.

As the representation in our framework: 
reflectors: { ...    
  monitors: { ..., 
        conflict(beliefs) →  
      revise(beliefs), ... 
  reasoners: { ... 
     beliefs: ... } } } 
suggests, the process of conceptual change involves two stages: the 
detection of a conflict and a subsequent revision.  In the simplest 
case, a conflict arises from the set of beliefs containing both p and 
not p.  Teachers (and AI-ED systems) have a range of techniques to 
lead students to such conflicts (for example, the use of entrapment 
strategies in Socratic dialogues) in the hope that they will be motivated 
to resolve them.  This section is more concerned with the methods 
used to deal with a set of beliefs considered to be in conflict.

Chinn and Brewer (1993) postulate what they consider to be 
“close to an exhaustive set” of responses that students may have to 
anomalous data (that is, data which contradicts that already believed).  
It is proposed that students may:

Ignore the anomalous data• .  The current beliefs are unchanged 
and the new data is not even explained away.
Reject the anomalous data• .  In this case, a reason for not accepting 
the data is given.

224    Computational Mathetics



Exclude the anomalous data• .  The data is considered to be outside 
the domain of the theory corresponding to current beliefs.  Beliefs 
from the new data are compartmentalized from the previous 
beliefs.  Conflicts between beliefs in different ‘compartments’ are 
not reconciled.
Hold the anomalous data in abeyance• .  It is assumed or hoped 
that the current beliefs will eventually be (re)articulated so that 
the new data can be explained.
Reinterpret the anomalous data• .  The data is accepted as being 
within the scope of the current beliefs but it is reinterpreted.  As with 
all the previous responses, the current beliefs are unchanged.
Make peripheral changes to the current beliefs• .  If beliefs are 
organised into a ‘core’ (which cannot be altered without affecting 
the entire set of beliefs) and a ‘fringe’ (which can be altered without 
changing the core), then the new data may be accommodated by 
relatively minor changes to the fringe beliefs.
Change the theory represented by the current beliefs• .  In this case, 
one or more core beliefs are changed.
As this list suggests, students may well appear conservative in 

their reaction to anomalous data, but justifiably so, as their everyday 
experience with funfair physics (section 1.1), magic, televisual 
illusions, and the like tells them that new data is often not what it 
seems.  In this respect, they are not unlike scientists, most of whom 
immediately dismiss any anomalous data and most of the time are 
found correct to have done so.

In the event that some conceptual change does ensue, then we 
may turn to AI work on belief revision or reason maintenance in 
the hope of finding some way of describing and performing those 
changes.  The field of belief revision developed in order to deal with 
the problem of databases which had come to contain contradictory 
propositions, from which any proposition at all may be derived.  

Before summarising belief revision techniques, it should be 
noted that they are somewhat limited in ambition.  First, they might 
better be called ‘belief elimination’ techniques, as their effect is to 

7.2.4    Conceptual change and belief revision    225   



remove one or more beliefs from the set of beliefs and not to revise, 
that is, edit, any of the individual beliefs.  More recent attempts to 
change the structure of beliefs are generally termed ‘theory revision’ 
(section 7.3.3).  Secondly, although the techniques take account 
of the beliefs upon which a belief depends, they do not consider 
in detail the reasoning processes through which a belief has been 
derived.  Typically, it is assumed that all beliefs are derived by 
applying a standard rule of inference (such as resolution), whereas 
we know that students may apply all kinds of nonstandard inference.  
Thirdly, as the term suggests, belief revision is only concerned with 
changing the contents of the set of beliefs.  There are no techniques 
for similarly revising the contents of the other components (such as 
the set of reasoners or goals) of our framework.  Indeed, it is not very 
clear what would constitute a conflict in such cases.

There are two basic methods of belief revision derived from 
different philosophies about the nature of a ‘justification’ for a belief.  
The foundational theory holds that all derived beliefs are justified 
by other beliefs and ultimately (as cycles and infinite chains are 
disallowed) by a set of foundational assumptions.  The coherence 
theory assumes that a belief is considered valid if it is coherent with 
all the other beliefs, not that it has an explicit justification.  The 
two theories imply different belief revision techniques: the former 
leads to attempts to identify one or more assumptions which may 
be deleted so that a troublesome belief can no longer be derived;  
the latter leads to the aim of modifying the set of beliefs as little as 
possible to incorporate a new belief while maintaining coherence.

The ATMS (de Kleer, 1986) and associated systems are the most 
well-known foundational systems.  Its basic algorithm is:

If a new belief 1. p is to be added to a set of beliefs then find all 
justifications j1, j2, ..., jk of not p.  Each justification will be 
a set of assumptions {a1, a2, ..., an} from which not p 
may be derived.
Find a minimal set 2. H such that at least one member of each 
justification is in H.

226    Computational Mathetics



Remove 3. H from the set of beliefs.  This will ensure that not p 
can no longer be derived.
Of course, many refinements of this algorithm are possible and 

necessary.  The fate of other beliefs which depend upon assumptions 
now deleted needs to be considered.  As remarked above, we might 
wish to consider a justification to be more than a set of assumptions.  
In particular, some of the beliefs may have been derived by default 
inferences and therefore might be considered more vulnerable to 
elimination.  As the status of a belief may depend in complicated 
ways on various defaults, it is usual to maintain a record of whether 
a belief is currently ‘in’ or ‘out’, along with its justifications, 
which are expensive to re-compute.  From an AI-ED perspective, 
we may wonder about the psychological validity of recording or 
generating justifications.  It is likely that students will produce ad-
hoc justifications when needed which may have little to do with the 
original reason for coming to believe a proposition.

The most prominent coherence-based approach, AGM 
(Gardenförs, 1988), is motivated partly by psychological arguments.  
Actually, AGM is not a single system but a set of axioms which 
are intended to capture the notion of rational change of belief and 
which may be satisfied by many different implementations.  If 
Expansion(K,p) denotes the set of beliefs K plus a new sentence 
p and its consequences, then Revision(K,p) is required to satisfy 
eight axioms, including the following:
 p is a member of Revision(K,p) 
 Revision(K,p) is a subset of Expansion(K,p) 
 If not q is not a member of Revision(K,p) then  
  Expansion(Revision(K,p),q) is  
   a member of Revision(K,p and q) 

If revision does occur then, it is postulated, any reasonable 
revision process should satisfy these axioms (although, as mentioned 
above, according to Chinn and Brewer (1993), the first axiom above 
is not adhered to when many students encounter anomalous data).  
According to AGM, belief revision involves finding a minimum set of 
beliefs to delete which preserves coherence (obviously, if coherence 

7.2.4    Conceptual change and belief revision    227   



were the only concern we could simply delete all the elements of K).  
In general, there may be more than one way of discarding beliefs 
consistent with the axioms and in order to choose between them one 
may specify an epistemic entrenchment, which gives an ordering 
between pairs of sentences.  In this case, we prefer to discard the 
‘less entrenched’ beliefs.

As usual, there is a thriving community elucidating the precise 
relationships between ATMS, AGM, and other systems and related 
theoretical notions such as default reasoning and nonmonotonic 
reasoning.  So far, belief revision has been seen as an asocial process, 
but we can anticipate developments towards multi-agent belief 
revision (Malheiro, Jennings and Oliviera, 1994), where each agent 
may hold different locally coherent beliefs and have only partial 
understanding of other agents’ beliefs.

As regards computational mathetics, the potential relevance of 
belief revision is twofold.  First, it provides a set of techniques which 
an AI-ED system may use for its own purposes.  For example, they 
may be applied to the problem of diagnosis, as discussed in chapter 
8.  Secondly, it may provide a technical language for clarifying the 
nature of conceptual change in students.  At the moment, as belief 
revision is orientated towards the efficient management of databases 
and conceptual change in students appears to be a relatively rare 
phenomenon, there is large gap between the two.

7.3 Inductive learning

Inductive learning involves generalising from observations.  If an 
agent holds a set of beliefs BS and has made observations OBS then 

p is an inductive conclusion if and only if:
not((BS + OBS) >> not p)

that is, the conclusion is consistent with the set of beliefs and 
observations, and
 BS + p >> OBS

that is, the conclusion explains the observations.  Of course, an 

228    Computational Mathetics



inductive conclusion is not necessarily a logical conclusion from the 
set of beliefs and observations.

A large number of inductive learning procedures have been 
developed and analysed in AI and many have been applied within 
AI-ED systems (some examples will be given in the next chapter).  
In order to illustrate the basic methods and the issues that arise, we 
will consider the following example.  Imagine that a student has 
observed that the elements in Table 7.2 below have been described 
as ‘metals’ or ‘nonmetals’ and wishes to develop an hypothesis to 
explain these observations.

 colour sp. gravity state soluble 
mercury silver 13.6 liquid no metal
tin silver-white 7.3 solid no metal
sulphur yellow 2.1 solid no nonmetal
cadmium blue-white 8.6 solid no metal
boron brown 2.45 solid no nonmetal
phosphorus white 1.8 solid no nonmetal

Table 7.2  Properties of some metals and nonmetals

The standard concept learning task involves inducing a rule 
(to define the concept) from a set of examples labelled as positive 
or negative instances of that concept.  The rule should distinguish 
between positive and negative instances, both observed and as yet 
unobserved.  In general, there are numerous inductive conclusions 
possible.  In order to select between them, various kinds of ‘bias’ 
may be applied, as discussed below.

The standard task requires the examples to be both described 
and labelled.  We can imagine trying to remove these requirements.  
In Table 7.2 the elements are described in terms of a fixed set of 
features (colour, specific gravity, state and solubility).  If the rule to 
be learned (assuming there is one) is in terms of features not given 
in the description (for example, the number of free electrons), then it 
is hard to see how any agent could learn the rule from the specified 

7.3    Inductive learning    229   



observations.  It is not much of a problem if there are many irrelevant 
features (for after enough observations they will be seen as such), or 
even if a ‘required’ feature is some function of given ones (for we can 
imagine a concept learning procedure trying to combine apparently 
relevant features), but if a crucial feature is missing then it will be 
hard for an agent, computer or human, to ‘invent’ it.

If the labels are missing (that is, we’re not told whether examples 
are positive or negative), then we have a concept formation task.  It 
is then up to the learner to decide which concepts to form and which 
examples are positive or negative instances of that concept.  In this 
case, the concepts formed should be useful according to the goals of 
the learner.

7.3.1 Version spaces

A neat method of concept learning is the version space algorithm 
(Mitchell, 1982).  This involves specifying for each feature a 
hierarchy of possible values and then manipulating upper and lower 
bounds for those values.  For example, Figure 7.3 shows possible 
hierarchies and bounds for the first two features after viewing the 
first three examples of Table 7.2.  At any moment, we can say that 
the concept, when it is fully learned, will be the conjunction of terms 
of the form featurei = valuei where the latter is a node of the 
corresponding tree between the bounds.  For example, Figure 7.3 

 

any-colour

whitish non-white

white silver off-white brown yellow

blue-white silver-white

any-SG

light 
(SG<3)

heavy

fairly-heavy 
(3<SG<7)

very-heavy 
(SG>7)

 
 

 Figure 7.3.  A simple version space

230    Computational Mathetics



indicates that the concept may be one of the following rules:
 colour = whitish and 
  specific-gravity = (any-SG or heavy or very-heavy) 
After the first three examples, there is also a second version space 
indicating that the concept may be:
 colour = (any-colour or whitish) and 
  specific-gravity = (heavy or very-heavy) 
The concept is considered fully learned when all the bounds enclose 
a single node.

In general, if an example is informative, it moves the lower 
bound upward if it is positive, and the upper bound downward if it is 
negative.  In outline, the algorithm is:

For positive instances, for each tree, move the lower bound to be 
above or coincident with the instance value;

For negative instances, select a tree in which the upper bound 
is above the instance value (if there is more than one way to 
do this, maintain all selections in parallel) and move the upper 
bound towards the lower bound to a node above or coincident 
with the lower bound which is not above the instance value.

If a desired operation cannot be performed then that version space 
is discarded.

The method has the following properties:
At an intermediate point, a partially learned concept is available • 
(unlike some methods, which require all the data to be analysed 
at once).
The concept learned is independent of the order of the examples.• 
Previous examples do not need to be remembered (their • 
contribution is implicit in the positions of the bounds).
The pre-defined structure of the trees is crucial to what is learned • 
(this is one kind of bias).  For example, having decided upon the 
above trees, the method could never learn a concept of the form

 colour = (white or yellow) and ...
The method simply fails if the concept to be learned is not • 
conjunctive (which is another bias).  For example, it could not 
learn a concept of the form

7.3.1    Version spaces    231   



 (colour = white) or (specific-gravity = heavy)  
Most everyday or scientific concepts are in fact conjunctive.
The method is vulnerable to ‘noise’.  If an example is misdescribed • 
or mislabelled then the bounds may be irretrievably, wrongly 
adjusted.

7.3.2 Numerically-based methods

The brittleness of the version space algorithm and other symbolic 
generalisation schemes may be overcome somewhat by using various 
kinds of statistical or probabilistic analyses.  For example, a number 
of methods use quantitative techniques to build decision trees, for 
example ID3 (Quinlan, 1986).  A decision tree defines a series of 
questions to ask (colour=white?, state=solid?, and so on) which 
lead to a decision about whether a particular example is a positive 
instance of the concept.  Such a tree is the outcome of ID3, which 
is itself concerned with determining the order of the nodes within 
the tree.  This is achieved by information-theoretic computations 
to find those features which provide optimum splits of the space 
of instances.  Ideally, the tree should test the most relevant feature 
first, then the next most relevant, and so on.  The method has been 
applied to the diagnosis of student problem-solving performance, as 
discussed in section 8.2.

One of the simplest learning mechanism involves assuming that 
the concept can be represented by a linear polynomial
  f = w1 x f1 + w2 x f2 + .... + wn x fn  
where wi is the weight of feature fi, and using the data to optimise the 
coefficients of that polynomial.  If, for a particular datum, the value 
of f is >0 (say) then the rule says it is a positive instance, otherwise 
negative.  If it turns out that the function returns a value higher than 
it should be for a particular example, then we could slightly decrease 
those weights which add to the value of f and increase those which 
do not, and vice versa if the value is too low.  After many (usually 
very many) examples, the weights might stabilise.

232    Computational Mathetics



Such a function is a ‘perceptron’ or ‘one-layer neural network’ 
(Figure 7.4).  Perceptrons are very limited in what they can learn, and 
what is learned (that is, the weights of the terms) is not declarative 
and does not correspond to meaningful objects in the world.  It 
is hard, for example, to imagine an AI-ED system being able to 
discuss with a student what it has learned using such a mechanism.  
Moreover, the learning mechanism, involving the gradual refinement 
of coefficients over many iterations, although it is motivated by 
psychological analogies to ‘evolutionary learning’, is not the kind of 
learning with which AI-ED systems are typically concerned.

Nonetheless, there is great enthusiasm for overcoming some of 
the fundamental limitations by using multi-layer neural networks 
(Figure 7.5), although these are even less declarative.  In such 
networks, we can consider the features to correspond to large 
numbers of simple processors interconnected in a way similar 
to neurons in the brain.  As the network learns, the associations 
between the nodes are strengthened or weakened.  There has been 
considerable mathematical analysis of neural networks and much 
optimism about their efficacy, fired by their apparent simplicity and 
their opposition to standard symbolic methods.  However, as far as 
AI-ED is concerned, there have been only a few proposals to apply 
neural network technology and no convincing demonstration of their 
usefulness in this context.

 
f1

f2

fn

w1

w2

wn

f�


 
 

 
f1

f2

fn

f�




 
 

 

Figure 7.4.  A one-layer network

7.3.2    Numerically-based methods    233   



7.3.3 Constructive induction

Most established inductive learning mechanisms use a fixed, pre-
defined representation space and are successful only if the original 
descriptors turn out to be directly relevant to characterising 
the concepts to be learned.  Constructive induction attempts to 
overcome this limitation by including mechanisms for generating 
new descriptors and modifying or removing old ones.

Inductive logic programming is a field of machine learning 
concerned with learning logic programs from positive and negative 
instances in the form of ground literals.  For example, given a set of 
examples:

reverse([],[]).  
reverse([a],[a]).  
reverse([c],[c]).  
reverse([a,b],[b,a]).  
reverse([b,c],[c,b]).  
reverse([a,b,c],[c,b,a]).  

and a set of defined predicates, such as
null, head, tail, assign, append  

then the inductive logic program FILP (Bergadano and Gunetti, 
1993) creates the definition:
 reverse(X,Y):- null(X), null(Y). 
 reverse(X,Y):- head(X,H), tail(X,T), 
  reverse(T,W), append(W,[H],Y).

 
f1

f2

fn

w1

w2

wn

f�


 
 

 
f1

f2

fn

f�




 
 

 Figure 7.5.  A multi-layer neural network

234    Computational Mathetics



Such programs learn theories to explain observations, the 
theories being expressed in a subset of predicate logic which is more 
expressive than the decision trees and similar representations used 
in other methods.  Inductive logic programming is based upon solid 
formal foundations, enabling issues of completeness and relative 
power to be analysed.  The general problem is clearly difficult 
(imagine the different ways in which the pre-defined predicates may 
be combined and the subtle ways the variables may inter-relate) and 
yet the above example has still not tackled the problem of being 
non-constructive, as the learned concept is expressed only in terms 
of pre-defined predicates.  We can invent a predicate to stand for a 
commonly occurring conjunction of terms, and use newly learned 
predicates in further learned concepts, but such constructs can 
always be replaced by their expansions in terms of the pre-defined 
predicates (at some cost in brevity and comprehensibility).  

However, in the case of recursively-defined predicates it may be 
necessary to create a new intermediate predicate first.  For example, 
from

multiply(0,A,0).  
multiply(1,B,B).  
multiply(3,4,12).  

and the definition of the predicate successor, any finite definition of 
multiply requires learning the predicate plus first.  Lapointe, Ling 
and Matwin (1993) describe a method capable of learning predicates 
of the form:

q(...).  
q(...):- q(...), newp(...). 
newp(...).  
newp(...):- newp(...).  

provided that certain constraints are satisfied by the terms of the 
predicates.  

In general, it seems that inductive logic programming involves 
instantiating standard programming schema which, because of the 
power of the logic programming notation, are actually quite broad.  
Many extensions to the basic idea are being investigated.  For 

7.3.3    Constructive induction    235   



example, De Raedt, Lavrac and Dzeroski (1993) consider the learning 
of multiple predicates at the same time, such as the predicates:

ancestor(X,Y):- parent(X,Y). 
ancestor(X,Y):- parent(X,Z), ancestor(Z,Y). 
father(X,Y):- parent(X,Y), male(X). 
mother(X,Y):- parent(X,Y), female(X). 

given observations in terms of the predicates parent, female 
and male.  Also, Bergadano and Gunetti (1993) consider how the 
number of examples can be minimised, with the learning program 
itself asking about any further examples it needs.  For example, from 
the instance

partition([1,3,0],2,[1,0],[3])  
and the six further instances queried from the user, the program 
learns:
 partition(L,El,L1,L2):-   
  null(L), null(L1, null(L2).  
 partition(L,El,L1,L2):-   
  head(L,X), tail(L,Y), partition(Y,El,Ls,Bs),  
  cons(X,Bs,L2), assign(Ls,L1), X>El.  
 partition(L,El,L1,L2):-   
  head(L,X), tail(L,Y), partition(Y,El,Ls,Bs),  
  cons(X,Ls,L2), assign(Bs,L1), X<=El.  

The state-of-the-art of inductive logic programming is worth 
bearing in mind when we come to consider (chapter 8) the problem 
of inducing a ‘program’ to explain observations which are a student’s 
attempts to solve problems.  The student’s problem-solution pairs 
correspond to the set of examples from which we have to learn and 
the pre-defined predicates correspond to knowledge which we might 
assume the student already has.  Our task might be seen as one of 
inducing a program which produces the answers observed.

‘Pure’ inductive learning, in which an agent attempts to learn, 
almost from scratch, from a set of observations is rather unrealistic.  
For humans, at least, most learning is incremental in that we have 
a partial, provisional theory to explain the observations we have 
so far and then learn by refining that theory in the light of further 
observations.  In the logic programming context, such an approach 

236    Computational Mathetics



is called theory revision and can be seen as a hybrid of analytical and 
inductive methods.

A theory revision system is given 
an initial domain theory (as a logic program) that is incorrect • 
and/or incomplete, and 
a set of positive and negative examples, • 

and produces a revised theory.  Generally, the aim is to minimally 
modify the theory so that it correctly classifies the examples.  This 
is obviously analogous to the belief revision problem, except that 
we are now not simply deleting propositions but are carrying out, 
in principle, any perturbation of the existing theory.  Wogulis and 
Pazzani (1993) describe a system which performs theory revision 
by the four operations of adding/deleting clauses/literals.  It first 
specialises the theory to exclude all negative examples, and then 
generalises this theory to include all the positive examples but not 
the negative ones.  Defining what is meant by a minimal modification 
is not simple because the semantics of two logic programs cannot be 
easily determined from the text of those programs.

The classic AI program AM (Lenat, 1982) can perhaps be 
considered to be a constructive theory revision program.  It created 
new concepts from old by co-opting their schema definitions and 
instantiating their components.  It is now conceded that the program 
worked as well as it did mainly because the Lisp code was so close 
to the mathematical concepts they defined that most modifications to 
that code produced mathematically interesting results.

7.4 Active situated learning

The nature of learning as viewed in machine learning may appear 
to educational theorists to be limited.  First, however, it should 

be remarked that it is not a view of learning that involves the ‘direct 
transfer of knowledge’, as caricatured by some.  Or, at least, the 
simple storing of information transmitted is considered a minor, 
uninteresting aspect of learning.  All the mechanisms we have 

7.3.3    Constructive induction    237   



discussed are ‘constructivist’ in that they assume that 
“learning occurs not by recording information but by interpreting 
it.  Effective learning depends on the intentions, self-monitoring, 
elaborations and representational constructs of the individual learner” 
(Resnick, 1989).

Maybe learning should be more ‘active’ than the ‘passive’ cogitation 
of examples, but, again, this apparent philosophical difference has 
been exaggerated  Many of the mechanisms involve the active 
participation of the learner, in, for example, selecting and generating 
instances to analyse.  A sub-field of machine learning, self-directed 
learning (Goldman and Sachs, 1994), requires learners to select 
the presentation order of instances, with the aim of minimising the 
number of instances seen.  In the case of AM, the program determines 
its own agenda of interesting concepts to study.  

The theory of situated learning presents a complementary, not 
conflicting, view of the nature of learning.  The main claim is that

“a critical element in fostering learning is to have students carry out 
tasks and solve problems in an environment that reflects the multiple 
uses to which their knowledge will be put in the future” (Collins, 
Brown and Newman, 1989).  

This is an assertion which may be agreed with or denied, but it has 
no technical content.  Situated learning is said (Collins, Brown and 
Newman, 1989) to serve the following purposes:

Students come to understand the purposes or uses of the • 
knowledge they are learning.
They learn by actively using knowledge rather than passively • 
receiving it.
They learn the different conditions under which their knowledge • 
can be applied.
Learning in multiple contexts induces the abstraction of • 
knowledge, so that students acquire knowledge in dual form, 
both tied to the contexts of its uses and independent of any 
particular context.
The view that learning experiences should be authentic cannot 

be categorically agreed with or not, for, as usual, it depends.  If we 

238    Computational Mathetics



wish to try to teach someone to fly-fish, which is a specific skill only 
ever practised in one kind of situation, then we would probably do 
better to do so in a real situation and not through some discussion in 
a classroom about the abstract principles of fly-fishing.  If we wish 
to teach the concept of a complex number, which is a surprisingly 
useful concept in many branches of science, then an explanation of 
its general properties might be better at first.  At the time the concept 
is learned, students are probably unable to appreciate its applications, 
which may therefore eventually come as a reward for their trust that 
the concept is indeed useful.

7.5 Social learning

All the above examples, and almost all others from machine 
learning, are concerned with learning by a single agent (be it 

computer system or human student).  The psychology of learning has 
predominantly considered learning to be driven by an individual’s 
internal motivations and structures.  The fact that “human intelligence 
develops in the individual as a function of social interaction is too 
often disregarded” according to Piaget (1967).  Not least, it seems, 
by Piaget himself for he is usually considered a prototypical case 
of focussing on individual learning, in contrast to Vygotsky, who 
is considered to be the psychologist who first emphasised the 
essentially social nature of individual cognition.  For Vygotsky, 
individual cognitive processes are the re-enactment by the individual 
of processes originally experienced in society.

There have been a huge number of experimental studies 
endeavouring to unravel the conditions and processes through which 
students may learn with others.  Various permutations of cooperative, 
collaborative, and peer learning situations involving students of 
different ages, sex, knowledge, and interests, in different activities, 
such as joint problem-solving, group projects, and so on, have been 
studied.  The approach of computational mathetics is to complement 
these studies by attempting to specify the hypothesised learning 

7.4    Active situated learning    239   



mechansisms with sufficient precision that one or more of the agents 
involved in the social learning activity may be a computational 
agent.  As before, such a computational model of social learning 
may serve as a conceptual resource for understanding the nature of 
social learning, and maybe as a basis for representing actual social 
learning processes in an AI-ED system.

Two studies illustrate the approach.  People-Power (Dillenbourg 
and Self, 1992) is a system with which a student works with 
a computer-based learner (or a co-learner) to develop a joint 
understanding of the properties of electoral systems.  The basic 
mechanism is a rather literal interpretation of Vygotsky’s view that 
learning involves the internalisation of inter-agent communications.  
The two learners carry out a dialogue to form an argument for some 
action, analogous to the self-explanation process, except, of course, 
that the components of the argument (proposal, rebuttal, agreement, 
and so on) are contributed by different agents.  

These argument patterns, which are available to both learners, 
become the basis for learning mechanisms such as generalisation.  
Experimental studies showed that human learners appreciated 
the nature of the collaborative interaction but found the need to 
communicate at the level and detail of the system’s own rules rather 
irksome.  Consequently, they communicated less, and, as learning 
occurs only through communication, the system learned less, and 
so the mismatch between the human learner and the co-learner 
increased, and so on.  

A more detailed study of the nature of collaborative learning and 
the role that communicative processes play in them may be gained 
by experimenting with two co-learners.  Imagine we have two 
agents, a and b, who are both trying to learn the same concept but do 
so by studying different examples and by describing the examples 
in different ways.  How can the two agents make sense of what the 
other agent learns, in order perhaps to integrate the two different 
learned concepts (in order to develop a richer joint one) or to be able 
to discuss the differences between the learned concepts?

240    Computational Mathetics



Brazdil (1992) gives the following illustration.  Each agent has 
a vocabulary V (a list of predicates used to describe the world), a set 
of observed examples E, and a knowledge base K describing what 
the agent knows about the examples in terms of its vocabulary.  For 
example,
 Agent a  Agent b 
Va= {father,mother} Vb= {parent,male,female} 
Ea= {  Eb= { 
  gfather(oscar,steve),    gfather(william,steve), 
  gfather(paul,louis),   gfather(oscar,peter)} 
  gfather(oscar,andrew)} 
Ka= { Kb= { 
  father(paul,oscar),   parent(william,sylvia), 
  father(oscar,louis),   parent(sylvia,steve), 
  father(louis,steve),   parent(oscar,helen), 
  father(louis,andrew)}   parent(helen,peter), 
    male(william),male(oscar), 
    male(steve), 
    female(sylvia), 
    male(peter),female(helen)} 
Applying an inductive logic program, here assumed the same for 
both agents, to Ei and Ki the agents might induce:
  gfather(X,Y):-     gfather(X,Y):-  
     father(X,Z),        parent(X,Z),male(X),  
     father(Z,Y).        female(Z),parent(Z,Y).  
Neither agent’s rule applies to the other’s knowledge base, as the 
vocabularies are different.  Moreover, even if an agent comes to 
know both rules (say b tells a its rule), then the combined rule
  gfather(X,Y):-    
     father(X,Z),father(Z,Y);   
     parent(X,Z),male(X),female(Z),parent(Z,Y).  
is of no use unless an agent has access to the other agent’s description 
of its world.  For example, if a uses its own vocabulary to describe 
the world from which b derived Kb, we have
Ka’= ( father(william,sylvia),  
   mother(sylvia,steve),  
   father(oscar,helen),  
   mother(helen,peter)}  

7.5    Social learning    241   



for which the combined rule fails.  To fully integrate b’s knowledge, 
a needs to learn b’s vocabulary as well (in this case, the concepts 
parent, male, and female).  This is possible if  b conveys its 
description of its world to a, so that a can compare the two descriptions 
Kb and Ka’.  As Kb contains examples of the concepts to be learned, 
a could apply an inductive logic program to Kb and Ka’, to learn:
 parent(X,Y):- father(X,Y).  
 male(X):- father(X,_).   
 female(X):- mother(X,_).    
In this way, using standard machine learning techniques, we can 
enable an agent to understand another agent’s theory.  If we regard 
one of the agents to be an AI-ED system, then we could imagine such 
a procedure being applied to handle situations where the student has 
a different viewpoint about the domain to that of the system.  If we 
imagine both agents to be human students, then the above kind of 
analysis might be adapted to enable a system to help the students 
work collaboratively to come up with an agreed integrated theory of 
the domain.

7.6 Simulated students

A successful collaborative learning arrangement in which one 
of the partners is a computer-based learner demands that this 

agent embodies an adequate theory of human learning, for otherwise 
it would become progressively out of step with its partners.  The 
prospect of developing simulated (or artificial or pseudo- or co-) 
learners has intrigued AI-ED researchers for some time (at least 
since Goldstein, 1979) but has only recently become a serious 
proposition (VanLehn, 1991; Ohlsson, 1992; VanLehn, Ohlsson and 
Nason, 1994).

The general view appears to be that learning is a very complex 
process, involving cognitive mechanisms and various phases and 
stages about which we have poor understanding and also affective 
and social factors about which we have even less, and as a result there 

242    Computational Mathetics



is no real hope of building useful simulated students.  Moreover, 
those theories of human learning which are computationally-
oriented (SOAR (Laird, Rosenbloom and Newell, 1986) and ACTR 
(Anderson, 1993)) aim for a comprehensiveness which makes it hard 
to extract detailed design principles for AI-ED.  A better idea of the 
potential role of simulated students may come from more focussed 
theories of learning.

Imagine, after VanLehn, Ohlsson and Nason (1994), that one has 
a theory of learning with the following axioms:

If in a problem-solving situation with features • f1, f2, .. one 
does action A and it turns out to be successful then form rule:
If f1 and f2 and .. then do A. 

If one reaches an impasse then try to find a rule which can be • 
generalised by (omitting a condition) to fit the problem situation.

Then the action of borrowing in this example
     1
  8 5  7 5
 - 2 7         > - 2 7
  ---------      ---------
might result in the rule:
 If needs-a-borrow(x) and next-column-left(y)  
  and left-most(y) then borrow-from(y,x) 
The problem 
  7 4 5
 - 1 2 7         
                         ---------
would now cause an impasse because there is no column which is 
both left-most and to the immediate left of the column needing a 
borrow.  In the case, the second axiom might produce either of the 
rules:
 If needs-a-borrow(x) and next-column-left(y)  
  then borrow-from(y,x) 
 If needs-a-borrow(x) and left-most(y) 
  then borrow-from(y,x) 
In other words, the theory predicts that students may mis-learn how 

7.6    Simulated students    243   



to borrow if given two-column examples and perhaps indicates 
that borrowing should be introduced in three (or more) column 
problems.

This is a simple example but the general idea is, in principle, 
more widely applicable.  The idea is to:

Specify a learning theory in computational form.  The theory 1. 
is expressed as a program T(A,O) which takes a possible 
instructional action A and generates learning outcomes O as 
predicted by the theory T.
For each available instructional action submit it to the program 2. 
and select that action which generates the preferred learning 
outcome.  Moreover, a trace of the program’s execution gives 
reasons for the selected action.

Expressed in this way, the idea is hardly novel.  The use of computer 
simulations to help determine courses of action is common in the 
sciences and even some social sciences, such as economics (where 
their relative lack of success is a warning that their applicability to 
education may be problematic).  Before considering this further, let 
us look at a second example.

STEPS (Ur and VanLehn, 1995) is a system able to simulate 
how a student learns to solve quantitative physics problems.  It is 
based upon the method of explanation-based learning of correctness 
(section 7.2.2).  The simulated student takes as input various kinds 
of tutorial actions - supplying feedback on past actions, giving hints 
on future work, and asking questions about the student’s knowledge 
and thought processes.  The performance of the simulated student 
provides data for the effectiveness of putative tutoring actions.  
STEPS has been used as a discovery learning environment for trainee 
teachers to learn effective tutoring tactics.

Doubts about the usefulness of simulated students for deriving 
instructional actions derive from two sources: first, a view that 
current theories of human learning are inadequate, and secondly, 
that the computer implementations are not a reliable manifestation 
of the theories.  Computational mathetics has nothing directly to 

244    Computational Mathetics



contribute to the first problem.  It is a matter for psychology to 
develop progressively more refined theories of human learning; the 
demands of computational mathetics may help to determine whether 
the theories are sufficiently refined.

The second problem is a more difficult methodological issue.  
When the subtraction example is laid bare as above, the link from 
theory to instructional prescription seems so straightforward that 
there appears to be no need for a computer simulation.  However, 
in general, theories of human learning will be so complex that this 
link will not be so transparent.  It is precisely because we cannot 
determine the implications of a theory of human learning that 
a computer simulation may be useful.  But we will only trust the 
prescriptions of such a simulation if we believe it to be a faithful 
rendition of the theory.

This is partly why it will be necessary to provide some kind of 
trace of the simulation’s execution.  Inevitably, however, because 
theories of human learning are currently so informally expressed and 
are so incomplete in their coverage of relevant aspects, much of the 
code of these simulations will be irrelevant to, or difficult to relate to, 
the theory and yet possibly crucial to their performance.  Ultimately, 
simulated students will only be trusted if we can view them as 
more than inscrutable, complex programs allegedly implementing 
imprecisely-formulated theories of learning.  The key theoretical 
notions will need to be isolated as a set of axioms, to be interpreted 
by some standard mechanism.  If that stage is ever reached, we will 
have a theory of learning which is not fundamentally different from 
other axiomatic theories.  We could, in principle, express the axioms 
in some agreed notation such as predicate logic and use standard 
analytic techniques to determine the properties and consequences of 
such a theory.

7.6    Simulated students    245   



8

Diagnosis

To begin a discussion of the nature of diagnosis in computational 
mathetics let’s consider the following comment by two leading 

researchers in human-computer interaction: 
“If the interface is intelligent, then it is not necessary (for it) to know 
anything about the user, because the interface will be able to interact 
with the user intelligently” (Newell and Card, 1985) 

or, as it might be specialised to AI-ED: 
“If the AI-ED system is intelligent, then it is not necessary for it to 
know anything about the student, because it will be able to interact 
with the student intelligently” 

or, to education, generally: 
“If the teacher is intelligent, then it is not necessary for her to know 
anything about the student, because the teacher will be able to interact 
with the student intelligently”.

The last statement might be considered to betray a view of 
teaching blinkered from any need or desire to understand individual 
students, and yet many designers of computer-based learning 
systems appear to subscribe to the other two statements as they aim 
to design systems which will interact with (or at least react to) the 
student intelligently without knowing anything about that student.  
Of course, it depends what is meant by an ‘intelligent interaction’.  
It may be that such an interaction is defined to be one in which each 
agent takes due account of its knowledge of the other participants.  
Many designers would not consider themselves to be designing an 
intelligent system at all: they ‘simply’ intend the system to respond 
appropriately to student inputs.  This echoes the debate in AI about 
the extent to which apparently intelligent behaviour can emerge 

246    Computational Mathetics



without detailed reasoning, for example, the debate on symbolic 
versus reactive planning (section 6.4).

The role of diagnosis in computer-based learning systems is 
controversial (Lajoie and Shute, 1993).  The main reasons for 
denying the need for diagnosis are:

As discussed above, systems can perform adequately without it.• 
Human teachers appear not to do much diagnosis and therefore • 
systems need not either.  (But the evidence has typically been 
gathered by protocol analysis of teachers in situations where 
diagnosis would be difficult and not verbalised.)
Diagnosis is too difficult and it is better not to attempt it.  (But • 
diagnosis does not have to be complete: it needs to be only as 
detailed as the situation requires and the constraints permit.)
Diagnosis implies remediation and hence an undesirable style • 
of interaction.  (But this is only one interpretation of what 
diagnosis is for.)
In some cases, the need for diagnosis is implicit in the design, 

but its need is denied or at least not emphasised.  For example, the 
MIT Media Lab’s ‘News in the Future’ section aims to generate 
individualised newspapers from the incoming news, which implies 
that the system knows the individual’s interests.  The proposed 
system is described using analogies with an ‘English butler’, an 
agent which maintains an unobtrusive, omniscient insight into the 
needs of its master or mistress (Negroponte, 1994).  (It is pleasing 
that such an anachronistic legacy of the English class system should 
find a home at the forefront of technological innovation).  

The dictionary defines ‘diagnosis’ as ‘the analysis of facts or 
problems in order to gain understanding’ and ‘the opinion reached 
through such an analysis’.  In our case, the ‘facts or problems’ 
concern the student’s interactions with the system and ‘the 
understanding’ is gained not for its own intrinsic interest but to 
support future interactions.  In this chapter, we will first present a 
general characterisation of the diagnostic process in terms of our 
framework, then a more limited, but precise, technical description, 

8    Diagnosis    247   



which will then be relaxed and refined to provide a broader and more 
realistic picture.

We have hypothesised that an agent’s problem-solving 
performance may be described in terms of a meta-level framework 
with various components:
reflectors: { ...    
  monitors: { ... 
  reasoners: { ... 
     beliefs: ...  
     actions: ... 
   situation: ... 
    goals: ... 
    plans: ... } } } 
In the case of a computer agent designed to solve problems, many of 
these components are known and maintained by the system itself.  In 
the case of a student agent, none of the components are known.  Some, 
for example, the actions, we can be reasonably confident about, if we 
have no reason to suspect the system’s interface is malfunctioning, 
but most are defeasibly ascribed to the student.  Any description 
of a student created by the system is an ascription (to the student) 
by the system for the system’s purposes.  It may or may not have 
any similarity to any cognitive object possessed in any sense by the 
student.  We will find that current diagnostic processes focus on the 
beliefs and, to a lesser extent, reasoners but, in principle, diagnosis 
can involve any component.

Some general points can be made immediately:
Diagnosis may make use of the system’s own descriptions.  If this • 
is done simplistically then the ascription to the student will be 
a variant of the system’s description, laying the process open to 
criticism that it ignores findings on expert-student differences.
To facilitate diagnosis, systems may have, in addition to problem-• 
solving knowledge, knowledge not of a particular student but of 
students in general.  For example, a system may know that students 
often confuse momentum and impulse, or that in subtraction they 
often cannot borrow across a zero.

248    Computational Mathetics



As mentioned above, diagnosis is carried out for a purpose.  It is • 
important for a system to take account of its purposes, otherwise 
it may seek more and more detailed diagnoses without any 
consequent benefit.
The diagnostic processes through which a system builds a • 
model of the student may or may not bear any comparison to the 
cognitive processes through which a student actually creates her 
own cognitive structures.  In some cases, techniques are applied 
for which no claims for any kind of cognitive validity are made; 
in other cases, the technique may be justified by referring to 
hypothesised cognitive processes.
A student is an intelligent agent able to carry out her own diagnoses, • 
to some extent, and it is arguable that she should be encouraged 
to do so.  In any event, it is likely that any successful diagnostic 
process will involve some shared activity between the diagnoser 
and the diagnosee.
Diagnosis is a complex process and it is sometimes hard to • 
imagine that proposed techniques will be usable during an on-
going interaction.  At this stage, it is too early to make definite 
statements about the computational tractability of the various 
techniques, although we can anticipate that many of them will 
only be usable in an ‘off-line’ manner.
In this chapter, we will elaborate on these points by first adopting 

a distinction, similar to that of the previous chapter, between 
analytical and inductive diagnosis, involving the analysis of a few 
or many pieces of evidence, respectively.

8.1 Analytical diagnosis

As with analytical learning, analytical methods of diagnosis 
involve the detailed analysis of one (or a few) observations 

and rely upon prior knowledge of the problem-solving domain and 
possibly of typical student (mis)conceptions.

8    Diagnosis    249   



8.1.1 Model-based diagnosis

We will first express the AI-ED diagnosis process in the terms used to 
define model-based diagnosis in general AI (de Kleer, Mackworth and 
Reiter, 1992).  AI-ED texts (such as Wenger, 1987) discuss diagnosis 
at great length but in entirely descriptive terms, with little attempt to 
relate the processes to the more rigorous techniques developed in AI 
(and, conversely, diagnosis in AI is never related to the diagnosis of 
student behaviour).  We will use the terminology and techniques of 
model-based diagnosis to establish a solid formal base, from which 
we may explore the considerable differences between diagnosis as it 
is needed in AI-ED and diagnosis as understood in AI.

We must first define what it is we are attempting to provide 
a diagnosis of.  We imagine a student interacting with a learning 
environment which in some general sense presents the student 
with problems to solve.  We will define an observation OBS to be a 
sequence of <problem, solution> pairs.  For example, for a student 
solving long-division problems, an OBS might be 

{<3456/56, 63 rem 38>, <2345/210, 11 rem 35>}.    
Problems and solutions may be represented by sentences in predicate 
logic.  Considerable refinement of the notion of a ‘problem’ and a 
‘solution’ is possible, for example, to enable the use of intermediate 
steps .

Next it is necessary to define the terms in which a diagnosis is 
to be expressed.  We can say that a student has carried out some 
‘procedure’ to generate a solution for a problem.  This procedure may 
be faulty, incomplete, or inconsistent (indeed, it probably will be if 
we are carrying out a diagnosis of it).  If we wish to argue that there 
may be no rational, deterministic connection between a problem 
and the student’s solution, then we can allow non-deterministic 
procedures (such procedures providing diagnoses, in the extreme, 
for all possible observations).

Unless we want to consider the procedure to be some direct, 
stimulus-response mapping from problem to solution (which we 

250    Computational Mathetics



can, if we wish), the procedure will be considered to have some 
‘components’.  For example, although we might consider that for 
long-division experts there is some direct mapping from 3456/56 to 
61 rem 40, in which case, a diagnosis can say little more than that 
the procedure is correct or faulty, for students we would imagine 
that the procedure of ‘long-division’ involves components such 
as ‘multiplication’ and ‘subtraction’.  We assume that a diagnosis 
involves some consideration of those component processes, for 
example, to be able to say that a student has incorrectly subtracted 
while solving the long-division problem.

A component COMP is a procedure which maps a set of input 
terms I into a set of output values O.  Both I and O may be partially 
specified, and COMP may be faulty in various ways.  A diagnosis will 
be carried out with respect to a set of components COMPS.

There are three possibilities for COMPS:
It could be fixed in advance of the diagnosis.• 
An appropriate • COMPS could be selected by the diagnostic 
process from a set fixed in advance.
It could be created dynamically by the diagnostic process.• 

The third option is essentially automatic programming (and will be 
considered in section 8.2.3).  At the least, it involves the editing of 
given components.  This is likely to be necessary for an adequate 
diagnostic process but it is technically very difficult: it has not been 
considered much in diagnosis in AI, where it is usually assumed that 
the system is diagnosing a manufactured device all components of 
which are known.  In this section we will first assume the first option 
and then (here and in section 8.4) consider the second option.

If we consider a process such as subtraction then we can see that 
there are many versions of this process (some correct, many more 
incorrect).  Rather than consider all these versions to be different 
components (as defined above), we will consider them to be different 
modes of the same component.  The rationale is that at any instant a 
component is in exactly one mode (although we may not be able to 
determine which).  

8.1.1    Model-based diagnosis    251   



Therefore, a set of modes Mij (j>=1) is associated with each 
component Ci.  This is a different assumption to that normally made 
in AI diagnosis.  There, all components are independent, with their 
own modes, so that if a device has, say, two multipliers then one may 
be faulty and the other may be working correctly.  With devices, it is 
reasonable to assume that components may fail independently.  For 
AI-ED diagnosis, it is more plausible to assume, to begin with, that 
a student will carry out a process like multiply the same way each 
time.  If one is unhappy with this assumption then we can, of course, 
consider the different manifestations to be different components 
with their own modes.

A component is defined by a set of axioms specifying, for each 
mode, how its input and output terms are related.  Each axiom may 
be written in the form:

C(I,O) if mode(C,M) and condition(I,O). 
that is, the component C maps I into O if C is in mode M and some 
specified condition between I and O holds.

The complete set of such axioms, defining all components for all 
their modes, is called a system description SD.  This too is a slightly 
different definition from that used in device diagnosis.  There, 
a distinction is made between the definitions of the components 
and of the device or system itself, that is, how the components are 
put together.  In device diagnosis the latter is called the system 
description.  In AI-ED diagnosis, we do not have a system description 
in this sense: it is part of the diagnostic process to work out how 
components may have been combined.

A diagnostic hypothesis HYP is a set of assignments of a mode 
to each component in COMPS, {[Ci,Mij]}.  A candidate CAND is an 
hypothesis which is consistent with SD and OBS, that is,

SD + OBS + CAND is satisfiable.  
(As before, we are using ‘+’ for set union.)  A complete diagnosis 
CD is the set of all candidates.  A diagnosis DIAG is some subset of a 
complete diagnosis.  So, in general, we have 

DIAG = {{[Ci,Mij]}} 

252    Computational Mathetics



that is, a diagnosis is a set of hypotheses, each of which is a set of 
assignments of modes to components.

This, then, is our starting definition of a diagnosis in AI-ED.  
A naive diagnostic process would take a given set of components, 
try all permutations of mode assignments to them, and for each 
set of assignments check whether it is consistent with the system 
description and the observations.  Trying all permutations would 
give us a complete diagnosis: often, we will have to settle for less.

Before giving a simple illustration, there are three special cases 
to consider:

The • correct mode.  Sometimes we have a component which is part 
of the problem-solving process but which is not to be considered 
during diagnosis, that is, it is considered to be a completely 
mastered pre-requisite skill.  For example, during long-division, it 
is necessary to compare two numbers to decide which is the greater 
- therefore, a ‘greater’ component is a necessary sub-component of 
‘long-division’ - but we may not wish to develop diagnoses which 
involve this component.  It is as though the component has only 
one mode (a ‘correct’ mode).  As all candidates would contain the 
mode assignment [Ci,correct], we omit such an assignment 
from the candidate and simplify the component definition to:
C(I,O) if condition(I,O). 

The • irrelevant mode.  All components are considered to have 
an implicit ‘irrelevant’ mode to handle situations where an 
explanation for OBS can be found which is independent of a 
particular component.  For example, we might define a ‘short-
division’ component (for division by a single digit), thinking that 
it may be a useful component for long-division diagnoses.  It may 
then transpire that diagnoses may be obtained without recourse to 
‘short-division’ (that is, that long-division does not in fact involve 
any short-division).  If a candidate contains [Ci,irrelevant] 
then, by definition, there will be other candidates where this 
assignment is replaced by [Ci,Mij] for all other modes Mij of Ci.  
In this case, only the [Ci,irrelevant] candidate will be included 

8.1.1    Model-based diagnosis    253   



in CD.  If a diagnosis indicates that a component is irrelevant to 
explain an observation, then clearly the observation provides no 
evidence about the correctness or otherwise of that component.  
The need for such a mode has recently been recognised in device 
diagnosis (de Kleer, Mackworth and Reiter, 1992).  Without it 
(that is, with only ‘correct’ and ‘faulty’ modes), not every superset 
of the faulty components of a diagnosis necessarily provides a 
diagnosis, which is an undesirable state of affairs.
The • expanded mode.  When a diagnosis is performed, COMPS is 
considered to be an unstructured set.  However, the available set 
of components may well be implicitly structured.  For example, 
‘borrow’ may be a component of ‘subtract’, which may be a 
component of ‘long-division’.  In order to permit the hierarchical 
expansion of the set COMPS (as described below), we introduce the 
special mode ‘expanded’.  If a member Ci of COMPS is assigned 
the mode ‘expanded’ then that component is removed from COMPS 
and replaced by all its sub-components.  These sub-components 
are determined by the diagnostic process by considering the 
‘condition’ part of axioms of the form:
Ci(I,O) if mode(Ci,expanded) and condition(I,O).   

Once a component has been expanded, it will no longer form 
part of a diagnosis but its sub-components will.  As the following 
illustration shows, this is the means by which progressively more 
detailed diagnoses may be obtained.
The following example is intended only to illustrate the 

mechanisms, not to imply that long-division is a fascinating problem, 
nor that our representations are cognitively valid (whatever that 
may mean).  Imagine that we are seeking a diagnosis for a single 
observation, namely, that when asked to divide 3456 by 56 the 
student answered “63, with a remainder of 38”.  So, in this case,

OBS = {<3456/56, 63 rem 38>}  
Imagine also that our diagnosis will be in terms of the single ‘long-
division’ component, denoted by ld.  So, in this case,

COMPS = {ld}  

254    Computational Mathetics



For each component (in this case, just ld) we have to specify 
the possible modes.  Let us assume ld has four modes, namely, ok, 
incorrect, backwards and no_zeroes (apart from the implicit 
irrelevant mode).  The ok mode indicates that the component is 
functioning correctly, and incorrect indicates some unspecified 
fault.  The backwards mode corresponds to the possible mistake or 
bug where students write down the digits from right-to-left rather 
than vice versa, and the no_zeroes mode to the bug of not writing 
down the zeroes at all.  We can specify the system description SD (in 
Prolog notation) as follows:
   ld([N,D],[A,R]):-   
  mode(ld,ok), divide([N,D],[A,R]).  
 ld([N,D],[A,R]):-   
  mode(ld,incorrect), not(divide([N,D],[A,R])).  
 ld([N,D],[A,R]):-   
  mode(ld,backwards), divide([N,D],[X,R]),  
   reverse(X,A).  
 ld([N,D],[A,R]):-   
  mode(ld,no_zeroes), divide([N,D],[X,R]),  
   remove_each(0,X,A).  
Notice that the definitions of these modes make no pretence at 
cognitive validity - they do not imply that students with the no_
zeroes bug first solve the problem correctly and then delete the 
zeroes!  We can obtain a diagnosis involving the mode assignment  
[ld,no_zeroes] by seeing whether the specified conditions hold.  

For the above OBS, COMPS and SD, we obtain a complete diagnosis 
of: 

DIAG = [[[ld,incorrect]]]   
In other words, ok, backwards and no_zeroes are not consistent 
with the observation and we are left with only the incorrect 
hypothesis.  If instead we have

OBS = {<123456/234, 725 rem 138>}  
then

DIAG = [[[ld,incorrect]],[[ld,backwards]]]   
Here we would have two candidate hypotheses: the student’s long-
division procedure may be faulty in some unknown way or it may 

8.1.1    Model-based diagnosis    255   



have the backwards bug.  Which diagnosis is to be preferred (if 
there is more than one) and whether such a diagnosis is adequate (or 
should be more detailed) depends upon the uses to which it may be 
put, as discussed later.  

Let us assume we would like a more detailed diagnosis.  As there 
is only one element in COMPS, we can only expand that (that is, ld).  
A component is expanded using axioms of the form 

ld(I,O):- mode(ld,expanded), .... 
Let us assume there are two such axioms, namely
 ld([N,D],[A,R]):-  
  mode(ld,expanded), greater([N,D],true), 
  left_digit([N,D],[L,Rest,M]), 
  multiply([D,M],X), subtract([L,X],Y),  
  right_part([Y,Rest,D],[Z,R]), join([[M],Z],A). 
 ld([N,D],[[0],[N]]):-  
  mood(ld,expanded), greater([N,D],false).  
The Prolog details are not important here but it should be said that 
(unlike the previous axioms) these should have some cognitive 
plausibility.  In this case, the axioms specify how long-division 
may be accomplished by comparing the numerator and divisor, 
determining a left digit, and then processing the rest of the numerator.  
As can be seen, the sub-components of ld are greater, left_digit, 
multiply, subtract, right_part, and join.  So, now,

COMPS = {greater, left_digit, multiply, subtract,    
 right_part, join}  

As before, the modes of all these components now have to be 
appropriately defined, for example, by:
 subtract([L,X],Y):-  
  mode(subtract,ok), decimalize(L,DL),  
  decimalize(X,DX), minus(DL,DX,Z), 
  decimalize(Y,Z). 
 subtract([L,X],Y):-  
  mode(subtract,does_not_compare),  
  sub_does_not_compare([L,X],Y). 
 subtract([L,X],Y):-  
  mode(subtract,faulty). 
 subtract([L,X],Y):-  

256    Computational Mathetics



  mode(subtract,slip), decimalize(L,DL),  
  decimalize(X,DX), minus(DL,DX,Z), 
  decimalize(Y1,Z), slip(Y1,Y). 
and so on.

Some components (in this case, say, greater, left_digit and 
join) may be assumed to be in mode correct, as discussed above.
The new COMPS in terms of which a diagnosis is to be expressed is 
given by the other components, which do have modes specified.  In 
this case, without the correct components we obtain 

COMPS = {multiply, subtract, right_part}    
Now, for:
OBS = {<3456/56, 63 rem 38>}     

we might obtain
DIAG = [  
 [[multiply,ok], [subtract,faulty],   
  [right_part,irrelevant]],  

  [[multiply,no_carry], [subtract,faulty],  
   [right_part,irrelevant]], ...]  
This might indicate that the student is subtracting incorrectly or may 
have a ‘no-carry’ bug when multiplying, and so on.  To emphasise, 
this is purely illustrative, for we can define whatever components 
and modes we wish and use whatever programming constructions 
we wish in our definitions.  In particular, the definitions may be as 
precise or imprecise as we wish to make them, for example, the 
faulty mode for subtract simply says that the output Y can be any 
value whatsoever.

We can continue to expand components of COMPS as long as 
there are expanded mode axioms defined, and defined modes for 
sub-components of that component.  For example, we might expand 
subtract in terms of borrow, to obtain a diagnosis:

DIAG = [    
 [[multiply,ok], [right_part,ok],  
  [borrow,no_decrement], ...],  ...]    

To summarise, the main points of this diagnostic process are:
There are no restrictions on the computational content of • SD.  SD 
need not contain only simple sequential processes (as it often does 

8.1.1    Model-based diagnosis    257   



in device diagnosis) but may contain any programming construct, 
including loops, recursion, and subprograms.
Modes are associated with components, not with particular • 
instantiations of the components.  This is not an inherent restriction 
because we can, if we think it appropriate, distinguish the different 
instantiations of a component by giving them different names, 
with their own modes.
In order to counter the common criticism that component • 
descriptions have to be exorbitantly complicated when we suspect 
that in many cases students are not executing any procedure at 
all but merely following some imprecise, ‘undefinable’ process, 
component descriptions are allowed to be similarly imprecise.  
For example, to diagnose that a student is so utterly confused 
about subtraction that she may produce an answer greater than 
the number subtracted from, we can define an axiom such as:

  subtract([L,X],Y):- 
   mood(subtract,utterly_confused), Y>L. 

There is no need to presume to be able to define a single system • 
description in terms of which diagnoses must be made.  We can 
define, for example, two borrow processes, corresponding to the 
two standard ways taught for borrowing.  If a borrow is carried out 
correctly then both modes will appear in a complete diagnosis, but 
if a mistake is made then the respective expansions may enable 
the method used to be identified.
We can define as many ‘correct’ and ‘incorrect’ modes as we • 
wish.  As far as the system is concerned there is no difference at 
all between them.  Diagnosis can be carried out without any value 
judgements by the system concerning the ‘worth’ of the modes 
diagnosed.
The method clarifies the need for cognitive validity.  The diagnosis • 
process has been misconstrued as one striving to develop a high-
fidelity model of the student’s cognitive processes.  Some have 
naturally concluded that such an ambition cannot be realised.  
However, sometimes cognitive validity is irrelevant, because we 

258    Computational Mathetics



can identify modes by detecting specified patterns.  Cognitive 
concerns come to the fore only in the definition of the expanded 
modes, because it is through them that the components in terms 
of which a diagnoses is developed are identified.
In principle, there is no reason why the method could not be used to • 
provide diagnoses of processes considered somewhat higher-level 
than those illustrated above, for example, plans, metacognitive 
processes, learning processes, and so on.  In practice, of course, it 
is hard to represent such processes (although, as indicated above, 
we can represent them vaguely, if that is the best we can do).
The method takes no position about the depth of diagnosis.  Hawkes • 
and Derry (1990) say “Deep modelling of procedural bugs is not 
necessary.  In order to derive an effective tutorial intervention, it 
is not necessary to know the exact nature of the buggy routine that 
produces a particular error.  Rather, it is sufficient to know that 
a particular error pattern indicates that a particular skill must be 
targeted for instruction.”  However, sometimes a ‘deep model’ is 
necessary, sometimes it is not, and the decision should be made 
by the system itself, taking account of what the diagnosis is being 
carried out for.

8.1.2 Differential modelling

For any worthwhile problem the number of potentially relevant 
components is large, and so it is necessary to limit the search space.  
One way to do so is to use differential modelling as explained by 
Sherlock Holmes in The Musgrave Papers: 

“You know my methods in such cases Watson: I put myself in the  
man’s place, and having first gauged his intelligence, I try to imagine 
how I should have proceeded under the same circumstances.  In this 
case the matter was simplified by Brunton’s intelligence being quite 
first rate.”

If the AI-ED system can itself solve the problem using 
components {Ci} then an initial assumption may be that the student 

8.1.1    Model-based diagnosis    259   



also knows those components.  This gives a default diagnosis of 
{[Ci,correct]}.  When observations conflict with this assumption, 
then we may seek a diagnosis in which one or more components are no 
longer correct.  We may consider hypotheses in which a particular 
component is assigned the mode irrelevant, which corresponds to 
assuming that the student does not use that component at all.  Such a 
diagnosis yields an overlay model, in which the student’s knowledge 
is considered to be a subset of the system’s knowledge.  Or we might 
have a set of replacement components and modes which are used 
systematically to change the default diagnosis.  This yields what 
is sometimes called an extended overlay model, as the diagnosis 
includes components and modes which are not part of the system’s 
(assumed correct) knowledge.  

We may also limit the number of components to be considered 
by limiting the size of the ‘problem’.  In the extreme, we could 
require that the problem needs only one component to solve it. This 
is equivalent to insisting that the student inputs to the system all 
intermediate steps of a problem solution.  In this case, the system 
determines a set of components {Ci} such that all hypotheses assume 
that all except one component are in mode irrelevant.  The one 
component which is not irrelevant is hypothesised to be the one 
the student actually used.  This component may be in mode correct, 
faulty, or any other mode.  This technique is called model tracing.  
It has been criticised for the constraints it imposes upon the student 
and for encouraging an overbearing style of interaction in which 
components diagnosed to be faulty are immediately remediated.

8.1.3 Fault-based diagnosis

The faulty mode, in which outputs are undefined, can lead to 
inefficient searches, when it is often known that components tend to 
‘misbehave’ in predictable ways.  These tendencies can be used to 
limit or to order the search space.  In AI-ED diagnosis, the study of 
faulty modes (that is, specific bugs) has been a rich area of research 

260    Computational Mathetics



(VanLehn, 1990).  Each identified bug corresponds to a mode in the 
above terminology.  The more specific the definition of the mode 
the more it becomes possible to develop a data-driven search for a 
diagnosis.  This is a kind of abductive method in which a particular 
observation (for example, the solution has no 0s) triggers a hypothesis 
(for example, that the student has the no_zeroes bug) which may 
then be subjected to a model-driven analysis.

Fault-based diagnosis has been thoroughly studied in expert 
systems, where it derives from the maintenance manual approach 
of listing associations between observations (such as ‘engine turns 
slowly’) and causes (such as ‘battery is low’).  Generally, such 
searches are organised as troubleshooting hierarchies and make use 
of probabilistic methods to combine possible diagnoses.  The main 
limitations of fault-based diagnosis for AI-ED purposes are:

The difficulty of accumulating a comprehensive set of fault • 
modes.  This requires an exhaustive analysis of student problem-
solving attempts and the development of a precise definition of 
the modes.
The fact that, because fault modes are largely domain-specific, • 
one has start afresh when diagnosing in a new domain.
The problem of dealing with novel fault modes (the simplest • 
solution being to use the catch-all faulty mode).
The fact that mapping student behaviour onto pre-defined faults • 
is a limited view of what diagnosis entails.

Nonetheless, fault-based diagnosis has a role in improving the 
computational efficiency of more general model-based methods.

The need for a comprehensive set of fault modes can be 
mitigated, in principle, by developing means of creating new fault 
modes when required.  This would involve the use of impasse-based 
learning methods such as repair theory (section 7.2.1) whenever the 
diagnosis system cannot find a diagnosis.  Giangrandi and Tasso 
(1995) describe a technique of this kind.  They define the concept 
of a meta-bug, which specifies “a possible way of altering pieces of 
correct domain knowledge in order to draw out new possible bugs 

8.1.3    Fault-based diagnosis    261   



which are not present in the bug library”.  For example, the meta-
bug:
 During the conjugation of a perfective tense,   
  the auxiliary verb ‘to have’ could be replaced   
  by the auxiliary verb ‘to be’  
could be applied to the correct rule:
 The present perfect is formed with the simple  
  present of the verb ‘to have’ followed by  
  the past participle of the verb. 
Such a meta-bug looks more like a generalisation of bugs which are 
anticipated but, for some reason, are not in the bug library.  It would 
naturally be more useful, but more difficult, to devise ways to create 
bugs which have not been anticipated but which nonetheless occur 
in practice, without creating bugs which in fact never occur.

8.1.4 Explanation-based diagnosis

Rather than search through all components and modes, a data-driven 
diagnostic process may regard the set of correct components as a 
domain theory and attempt to derive the student solution, as in 
the first stage of explanation-based learning (section 7.2.2).  Each 
derivation yields a candidate diagnosis in which those components 
used are effectively assigned mode correct and the others mode 
irrelevant.  In other words, a diagnosis is regarded as an explanation 
or proof of the solution from the correct components.

If a derivation cannot be obtained (and the student’s solution is 
considered to be incorrect), then the leaves of the unsuccessful proof 
trees potentially correspond to the student’s (incorrect) components 
(Hoppe, 1994).  In general, there are too many such leaves and they 
must be pruned by domain-specific heuristics before any further 
analysis.  For example, only certain classes of leaf goal may be 
designated as possible sources of incorrect knowledge.  

A variant of the explanation-based learning mechanism can then 
be used to generate incorrect components from which the previously 
unprovable goal may be derived.  For example, in symbolic 

262    Computational Mathetics



differentiation if we have the unprovable goal
derivative(sin(x^2),x^2,-cos(x^2))  

that is, the student believes that -cos(x^2) is the derivative of sin(x^2) 
with respect to x^2, then the method might generate the generalised 
(faulty) component:

derivative(sin(x),x,-cos(x))  
In general, the generated component is a Prolog rule in which the 
conditions are formed by analysing other failed subgoals.  As with 
any generalisation process, there is no guarantee that the created 
components are not over-generalisations.

Normally, there is more than one set of components from which 
a solution may be derived.  The diagnosis needs to identify the 
appropriate set (that is, context) for carrying out an analysis.  For 
example, adapting an example from Costa, Duchènoy and Kodratoff 
(1988), imagine that a system has the following beliefs:
 Beliefs(c) = 

  { Man(Louis-XIV),   
    Lived(Louis-XIV,17th-century),  
     c1: {Man(x) and Noble(x) and   
     Live(x,17th-century) -> Wig(x)}, 
     c2: {Man(x) and Criminal(x) -> Wig(x)}, 
    c3: {Man(x) and Bald(x) -> Wig(x)}, 
    c4: {Man(x) and Joker(x) -> Wig(x)},  
    ... } 
where c1, c2, ... define possible contexts.  

If a student asserts that Louis XIV wore a wig (Wig(Louis-
XIV)) then this cannot be derived in any context.  Because the 
system believes that Louis XIV lived in the 17th century, it might 
be inclined to context c1 (in trying to find a reason for the student’s 
statement) and so could perhaps ask if (or assume that) the student 
believed Louis XIV to be a nobleman.  If, however, she asserts that 
Louis XIV was a joker then we would probably adopt context c4.  
As this example makes clear, the components in terms of which the 
diagnosis is conducted correspond to beliefs of the system and also 
to beliefs (such as Man(Louis-XIV)) previously ascribed by the 
system to the student.

8.1.4    Explanation-based diagnosis    263   



The idea of involving the student in carrying out a diagnosis 
(by, in this case, providing further information - erroneous or not - 
to enable a derivation to be completed) is obviously a reasonable, 
if potentially unreliable, strategy.  It is a recognition that entirely 
system-based diagnosis is likely to be infeasible and also that such 
an involvement may benefit the student.  The nature of interactive 
diagnosis is considered further in section 8.6.

A student input is only one example of what is referred to as an 
‘oracle’ in the program debugging field.  In general, an oracle is an 
agent external to the diagnostic system which provides information 
when asked by the system.  Because we have viewed components 
as parts of programs, when a particular desired result cannot be 
derived from the program, we could interpret that as evidence that 
the program is faulty and therefore needs debugging.  This way of 
viewing diagnosis will be considered in section 8.2.3.

8.1.5 Diagnosis by metareasoning

Explanation-based learning, and its extensions to handle unsuccessful 
derivations, is a meta-level process, as it involves analysing an object 
program.  Because in AI-ED the object program may have various 
‘undesirable’ properties, the meta-interpreter needs to be particularly 
carefully designed.  The characterisation of AI-ED diagnosis as a 
metareasoning task has been investigated by Cialdea (1992), Beller 
and Hoppe (1993) and Aiello, Cialdea and Nardi (1993).  

Aiello et al (1993) first distinguish four sets of beliefs:
 E ≡ Beliefs(c), the set of (correct) beliefs of the system 
  or ‘expert knowledge’, that is, {p | B(c,p)};
 S ≡ Beliefs(c,s), the set of beliefs ascribed to the student
  by the system, that is, {p | B(c,B(s,p))}
 U ≡ the set of beliefs which “the system knows the student 
  does not know”, or (perhaps) {p | B(c,not B(s,p))}
 B ≡ a set of incorrect beliefs which the system believes may 
  be held by typical students, that is, a bug catalogue.

264    Computational Mathetics



Object-level inferences rules (such as resolution) enable further 
beliefs to be derived from any set of beliefs.  We may ascribe 
different inference rules (or reasoners) to different agents but in the 
following we will assume uniform reasoning capabilities.  The meta-
level predicate

Derivable(X,Z,p)  
is defined to be valid if the proposition p can be proved in the object-
level using exactly the formulae in Z, which is a subset of X.

If a student indicates that she believes p then the system may 
believe that the student believes all beliefs which contribute to the 
‘best explanation’ Z of p, or, as a formal diagnostic principle:
 Answers(p) and Explains(Z,p) and   
  q is a member of Z >> Ascribe(q,S)  
where Ascribe(x,y) means that the belief x is ascribed to the set 
y.  

Several definitions of Explains are suggested by Aiello et al 
(1993):

Derivable(E,Z,p)•  >> Explains(Z,p)   
that is, p is explained by the subset Z of E (the system’s correct 
beliefs) from which p may be derived.  This axiom is suitable only if 
there is just one way of deriving p.

Derivable(E+B,Z,p) and •  
 Ɐq (q is a member of Z -> Askstudent(q)) >>
  Explains(Z,p)    

that is, if the student answer is incorrect, p is explained by a subset 
Z of the expert and buggy knowledge, provided that the student 
confirms that she believes all members of Z, this clause being 
included presumably because the diagnosis of incorrect knowledge 
is inherently unreliable.

q is member of E+B and•  
 ƎZ(q is member of E and Derivable(S+{q},Z,p)) >> 
  Explains({q},p)  
that is, p is explained by the member q of E or B which when added 
to beliefs already ascribed to the student enables p to be derived.  In 
this case, it is assumed that the set S grows incrementally: any answer 

8.1.5    Diagnosis by metareasoning    265   



which cannot be derived from S is assumed to be derived from S plus 
one further belief, either correct (in E) or incorrect (in B).

Ǝq(q is member of B and Derivable(E+{q},Z,p)) >>•    
  Explains(Z,p)  
that is, p is explained by a subset of E plus an incorrect belief.  This 
assumes that incorrect answers are explained by at most one bug.

Diagnosis tends to concentrate on explaining wrong answers, in 
terms of what is believed.  However, a system may also diagnose 
what a student does not believe, which can be useful for instructional 
decisions.  For example, if a student answers “yes” to a question p 
then we might infer that she knows no way of deriving not p:
 Answers(p,yes) and ƎZ(Derivable(E+B,Z,not p) and  
  q is member of Z) >> Ascribe(q,U)  
Similarly, if she answers “I don’t know” then we might infer that she 
knows no way of deriving p or not p:
 Answers(p,dontknow) and   
  ƎZ(Derivable(E+B,Z,p) or  
   Derivable(E+B,Z,not p)  and  
   q is member of Z) >> Ascribe(q,U)    
If the diagnostic process is going to go to the trouble of maintaining 
U, then it could also use U within diagnosis itself, as no explanation 
should use a member of U.  In other words, the above axioms could 
be modified to be of the form:

 ... and not Ǝr (r is a member of Z and
  r is a member of U) >> Explains(Z,p)   
As Aiello et al (1993) discuss, these axioms correspond to the 

diagnostic processes of some classic AI-ED systems and variations 
can be developed to correspond to others.  From a computational 
mathetics perspective, we can consider what may be gained by 
expressing diagnostic principles in such a notation, rather than in 
the more normal, informal, natural language statements which we 
have briefly summarised in our descriptions of each axiom.  The 
formal axioms are more concise and precise and, to some readers at 
least, more easy to read.  The use of a common notation clarifies the 
similarities and differences of the various methods.  The precision may 

266    Computational Mathetics



reveal gaps or inconsistencies in the design of diagnostic processes.  
For example, in the case of the second axiom for Explains, do we 
really want to ask the student about the correct beliefs used or just 
the buggy ones?  The axioms serve as a specification which may be 
expressed directly in an appropriate programming language, enabling 
them to be investigated efficiently and independently in prototypes 
before being buried in complex, complete AI-ED systems.

However, as the precision also helps make clear, there are many 
aspects of diagnosis which are not addressed by such formalisms 
(and if they are addressed within AI-ED systems are usually done so 
in an ad-hoc manner).  For example, the formalism does not really 
address the problem of diagnosing a series of observations, some 
of which may be in error (corresponding to student slips, perhaps) 
and during which the student may have actually learned something.  
The above notation does not allow for the fact that students reason 
differently from experts.  It does not allow for the sets S and U to 
be inconsistent.  It also treats the sets of beliefs as unstructured and 
does not capture the intuition that members of B can be associated 
with members of E which they can be considered to replace.  Still, 
we can begin to imagine how such formalisms might be extended to 
handle some of these issues.

Van Arragon (1991) combines the ideas of default reasoning and 
metareasoning in a recognition that system and student reasoning 
are different.  First, beliefs are partitioned into two sets:
 F - a set of facts, such as Novice(s);
 A - a set of defaults, such as 
  Novice(x) → Understands(x,login)  
A proposition p is ‘explained’ or believed if there is a set D of ground 
instances of elements of A such that F+D is consistent and implies p.  
As there is a difference between the (default) reasoning of the system 
about the learner and the (default) reasoning of the learner about 
the domain, a meta-level is introduced.  The meta-level corresponds 
to the system reasoning about the learner; the object level to the 
system’s model of the learner’s reasoning about the domain.  The 

8.1.5    Diagnosis by metareasoning    267   



object level contains facts and defaults ascribed to the learner, for 
example,

F(s) = { not Error-message(“rm t*”), ... }  
A(s) =  { Side-effects(x) → Error-message(x), ... }

The meta-level has the fact that the learner forms explanations as 
described above, that is,
 F(c) = { F(x)+D → p and F(x)+D is consistent and 
  D is subset of A(x) >> Explains(F(x),A(x),p) } 
and the default that the learner’s assumptions are consistent, that is,
 A(c) = { D is subset of A(x) →  
  F(x)+D is consistent } 
In this case, using the default reasoning methods of the Theorist 
system (Poole, 1988) in which the system is implemented, it is 
possible to derive that
 Explains(F(s),A(s),not Side-effects(“rm t*”))

Despite the formidable technicalities, the method really distinguishes 
between the content of the system and learner reasoning processes.  
The mechanisms themselves are assumed to be essentially the same, 
whereas we can be sure that learners’ reasoning is not as reliable and 
thorough as that which we embed in systems.

8.2 Inductive diagnosis

Purely analytical methods of diagnosis are inherently unreliable, 
rather more so than analytical methods of learning, as a single 

observation (or a few observations) of student problem-solving 
performance may not be a good indication of underlying competence.  
Some machine learning methods do take account of noise (or error) 
in the data, but in the case of AI-ED diagnosis, noise, corresponding 
to slips, is ubiquitous.  Also, when the underlying competence is in 
fact low then actual performance can be very variable.  

The early studies on the apparent stability of bugs in subtraction, 
which were carried out under conditions (such as providing no 
feedback) which induced stability, have been shown to offer a false 

268    Computational Mathetics



promise for AI-ED.  Student bugs are not like program bugs: they 
do not produce replicated behaviour when re-executed.  Typically, 
when a student does not know how to do something, then she will do 
it differently on different occasions.

Model-based diagnosis (section 8.1.1) can handle slips, in a way.  
If we consider that a slip in executing a component means that a 
student is actually able to execute it correctly but, for some reason, 
the output is ‘corrupted’, then we could write axioms of the form:
 C(I,O):-  
  mode(C,slip), correctC(I,Z), corrupt(Z,O). 
This amounts to considering the slip mode as similar to the 
nondeterministic faulty mode, which perhaps it is.  One difference 
is that the slip mode is to be assigned to one or more instantiations 
of the component, not to all of them (because in long division, say, 
you can make a slip with one subtraction but not necessarily the same 
one with all of them).  If this seems a not very profound treatment 
of slips, then we can attempt to define a more precise axiom for 
the mode - but the more that we do so, the more the mode seems to 
define a bug, rather than a slip.

Without care, the slip mode will be returned as a candidate 
diagnosis for any observation whatsoever.  Whether or not a diagnoser 
should accept such a diagnosis is usually resolved by considering 
the history, that is, the previous problem-solving performance.  The 
model-based method can be extended to diagnose more than one 
observation.  If for observation OBS1 we obtain candidates C1 and 
C2, and for observation OBS2 candidates C2 and C3, then for the 
series {OBS1,OBS2} we would expect the diagnosis C2, that is, the 
intersection of the individual diagnoses.  In fact, it is more complicated, 
because the components are hierarchically organised and therefore 
candidates may be consistent but not identical.  In general, we might 
seek the least general specialisation of pairs of candidates - except, 
for slips and maybe other modes, which we might prefer to ignore 
if we have strong evidence for other candidates.  This seems to be 
leading inexorably towards the use of numerically-based methods.

8.2    Inductive diagnosis    269   



8.2.1 Numerically-based methods

Typical of the shallow, but still possibly useful, numerically-based 
schemes which can be devised to provide diagnoses in AI-ED is that 
of feature-based modelling (Webb, 1993).  The method requires two 
sets to be defined: 

a set • F of ‘context features’, which describe properties of the 
problem-solving context (for example, for subtraction, ‘minuend 
is larger than subtrahend’, ‘the subtrahend is zero’, and so on).
a set • A of ‘action features’ which describe properties of the 
student’s actions (for example, ‘result equals minuend’).

A diagnosis is expressed in terms of ‘associations’ of the form
 f1 and f2 and ... → a  
where f1,  ... are members of F and a is a member of A.  An association 
f → a is ‘accepted’ (that is, considered part of a diagnosis) if:

N(1. f → a) >= min_evidence
N(2. f → a) >= min_accuracy * (N(f → a) + N(f → not a))
there is no accepted association between a specialisation of 3. f 
and a sibling of a.

where N(f → a) is the number of observations where all the features 
of f and a occur, and min_evidence and min-accuracy are parameters 
(for example, 3 and 0.8, repectively).  The hope is that an association 
corresponding to a slip will be outweighed by other evidence.

As mentioned in section 5.5, the Sherlock system described the 
student in terms of a set of 5-tuples, each tuple {p1,p2,p3,p4,p5} 
giving the probabilities of a student having a certain level of 
knowledge of some concept.  For example, A1={0,0,0.3,0.5,0.2} 
might represent that the system considers that there is no chance that 
the student has no knowledge or limited knowledge of A1, and there 
is a 0.3 chance that the student has unautomated knowledge of A1, 
a 0.5 chance that she has partially automated knowledge, and a 0.2 
chance of fully developed knowledge.  In order to maintain such 
a representation (that is, to diagnose student’s actions in terms of 
modifying such probabilities), a set of updating rules of the form:

270    Computational Mathetics



 event → apply the change factor c and   
  range vector {v1,v2,v3,v4,v5} to {p1,p2,p3,p4,p5}  
are specified, where event is some action that the student is seen 
to perform, and the application is defined (for downgrading) by the 
formulae
 new p1 = p1-c*p1*v1 + c*p2*v2   
  (and similarly for new p2, p3, p4)  
 new p5 = p5 - c*p5*v5   
and similarly for upgrading.  For example, given initial probabilities 
of {0.2,0.2,0.2,0.2,0.2}, a change factor of 0.1 and a range 
vector of {0,0.3,1,1,1}, after ten downgrades the probabilities 
are {0.29,0.33,0.18,0.14,0.06}.

The apparent precision of such finely-honed computations lends a 
possibly spurious authenticity to them.  The system designer has first 
to define the set of concepts for which probabilities will be specified 
and then assign them initial probabilities.  For each concept, he must 
then identify the events which influence those probabilities, and for 
each event he must specify the change factor and range vector.  
The effects of all these decisions may interrelate in complex ways, 
or they may turn out to be relatively unimportant.  As discussed in 
section 5.5, the status of such ad-hoc numerically-based schemes is a 
matter of debate and there is a move to relate them to more precisely-
defined methods, such as Bayesian networks, and to integrate them 
with more logic-based methods.

It is not difficult to add simple probabilistic calculations to 
the model-based method of section 8.1.1.  If we define a priori 
probabilities for the various modes, for example,
 prob(subtract,[[ok,0.5], 
  [does_not_compare,0.1],[faulty,0.2],...]).
 prob(multiply,[[ok,0.4],[no_carry,0.2],...]). 
then the a priori probability of any candidate is the product of the 
probabilities of the modes assigned (assuming the probabilities are 
independent).  Given such probabilities we can rank the candidates 
on the basis of their a priori probabilities, and, with a suitable 
meta-interpreter, prioritise the search for candidates.  Poole (1994) 

8.2.1    Numerically-based methods    271   



develops an extension of such a notation which enables Bayesian 
networks to be re-expressed in an extended Prolog.  For example, 
the simple network given in Figure 5.1 and repeated below would 
be represented by:

ssub(X):- sub(Y), cpssub(X,Y). 
ld(X):- sub(Y), mult(Z), cpld(X,Y,Z). 
sld(X):- ld(Y), cpsld(X,Y). 

where cpssub(X,Y) indicates the conditional probability of ssub(X)
given Y (and similarly for cpld and cpsld) and is defined by a set of 
‘disjoint’ clauses:

disjoint([sub(yes):0.8,sub(no):0.2]).  
disjoint([mult(yes):0.7,mult(no):0.3]).  
disjoint([cpssub(yes,yes):0.95,  
 cpssub(no,yes):0.05]).  
disjoint([cpssub(yes,no):0.01,  
 cpssub(no,no):0.99]).  
disjoint([cpld(yes,yes,yes):0.6,  
 cpld(no,yes,yes):0.4]).  

and so on.  The definition of the interpretation of disjoint enables 
the probabilities of the various outcomes to be calculated.

However, as discussed in section 5.5, observations can propagate 
their effects through the probabilities associated with each node and 
it is not clear how this is achieved in the logic-based formulation.  
Nonetheless, there is considerable promise in being able to combine 
the epistemic (logic-based) and heuristic (numerically-based) 
aspects of diagnosis.  A purely model-based approach as sketched 

  

Can-subtract (sub)

Can-multiply(mult)

Can-solve 508-253 (ssub)

Can-long-divide (ld) Can-solve 5108/253 (sld)
Prob(sub)=.8

Prob(mult)=.7

Prob(ssub|sub)=.95 
Prob(ssub|~sub)=.01

Prob(ld|sub,mult)=.6 
Prob(ld|sub,~mult)=.1 
Prob(ld|~sub,mult)=.05 
Prob(ld|~sub,~mult)=.01

Prob(sld|ld)=0.9 
Prob(sld|~ld)=0.001

 

 

272    Computational Mathetics



in section 8.1.1 is exponentially complex, as each component may 
be in any of its modes.  For diagnostic problems of any interest 
there will be a very large number of hypotheses to consider, most 
of which will be very unlikely.  Therefore, some modification which 
takes account of the probabilities of the hypotheses would seem 
necessary.  At the moment, there are only preliminary studies and no 
convincing demonstrations of the use of Bayesian networks for AI-
ED diagnosis, and no attempts to integrate them with model-based 
methods.  Much the same can be said of the use of neural networks 
(another numerically-oriented method) for diagnosis: there are 
optimistic proposals but no successful examples.

8.2.2 Diagnosis using inductive learning methods

The uses of explanation-based learning, Bayesian networks and other 
methods outlined above are internal to the diagnosis system and 
make no claim to be comparable to students’ cognitive processes.  
In general, of course, comparisons may be made - for example, 
explanation-based learning may be related to self-explanations 
- but the particular adaptation for diagnosis is not justified by 
any analogy to hypothesised student processes.  If, on the other 
hand, we had a perfect simulated student (section 7.6) then there 
would be no need for diagnosis at all: we would just initialise the 
student model and then the simulation would determine subsequent 
models.  Consequently, most diagnostic methods combine aspects of 
computational effectiveness and cognitive fidelity. 

The interplay between the two is illustrated by the use of 
inductive learning methods (section 7.3) for diagnosis.  If we use 
model tracing and describe the problem in terms of a set of features 
and the student’s step as an action then we have an association as in 
feature-based modelling:
 f1 and f2 and ... → a  
Some of these associations may be identified as correct steps and 
some as incorrect.  If we want to determine when a student performs 

8.2.1    Numerically-based methods    273   



a particular action a, then we can consider the correct steps as 
positive instances and the incorrect ones as negative instances and 
the task is precisely that of concept learning (section 7.3).  Any of 
the standard methods such as version spaces or ID3 may be applied 
(but preferably those which can handle noise in the data).  The 
outcome is a diagnosis of when the student considers it appropriate 
to perform action a.

If we have a set of a student’s problem solutions, in the form of 
a sequence of steps, and a corresponding set of correct solutions, 
then the positive instances can be identified as steps which keep the 
student on the correct path and negative instances as steps which take 
the student off the correct path.  Ohlsson and Langley (1988) apply 
this idea in the ACM system for the domain of subtraction.  Here, the 
system does not begin with the student’s steps but generates them 
(as in the first step of explanation-based learning).

ACM performs diagnosis and is not an attempt to model student 
learning, but cognitive aspects cannot be ignored.  The specification 
of the features and actions in terms of which a student’s solution is 
described is crucial.  It is rather implausible that a diagnosis would be 
useful for AI-ED purposes if it were expressed in terms which bore 
no relation to those in which the student herself conceptualised the 
domain, however perfectly that diagnosis explained observations.  
Once the features and actions are defined (which amounts to 
defining a domain theory in explanation-based learning terms and 
is clearly domain-dependent), the generation of a student solution 
path for problems of any size is difficult, because the search space 
is so large.  

In order to reduce this space, Ohlsson and Langley (1988) 
introduce a set of ‘psychological heuristics’, including:

Prefer paths that implicate smaller memory load.• 
Assume that there no superfluous steps, so that intermediate • 
results are used subsequently.
Prefer paths that make minimal assumptions about errors.• 

The role of such heuristics is difficult to assess.  As described, they 

274    Computational Mathetics



serve to limit the search space for the student solution path but 
thereafter play no part in the diagnosis itself, as it might appear that 
they should.  Conversely, a (provisional) diagnosis could itself be 
used to limit the search space for subsequent problems.  

More subtle are the implicit assumptions about the nature of a 
diagnosis, in particular that it involves only the misapplication of 
operators.  It is possible that a more useful diagnosis would concern 
the very conceptualisations of the domain, which have to be taken as 
given.  The method also assumes, like many methods of diagnosis, 
that there is a single procedure which it is the aim to identify, whereas 
empirical studies (Ohlsson, 1994) suggest that students have a range 
of strategies which they switch between from problem to problem.

8.2.3 Diagnosis by automatic programming

If diagnosis is thought of as a task of determining a procedure 
that accounts for observed problem-solving performance then 
this is tantamount to considering it to be a variety of automatic 
programming, in which programs are created which produce the 
required outputs for specified inputs.  As the discussion of inductive 
logic programming and theory revision in section 7.3.3 indicates, we 
cannot be very optimistic that this approach is currently able to solve 
all our problems of diagnosis.

The THEMIS system (Kono, Ikeda and Mizoguchi, 1994) 
illustrates some of the issues.  First, an extended Prolog notation is 
adopted to represent the student model: the expression p(x1,...
xn,t) indicates the system’s belief about the student’s belief 
regarding the proposition p(x1,...xn) according to the value of t:

if • t=true, then the system believes the student believes  
p(x1,...xn);
if • t=false, then the system believes that the student believes 
not p(x1,...xn);
if • t=unknown, then the system believes that the student neither 
believes nor disbelieves  p(x1,...xn);

8.2.2    Diagnosis using inductive learning methods    275   



if • t=fail, then the system does not believe anything about the 
student’s beliefs concerning p(x1,...xn).

The first three correspond to the system predicting that the student 
will answer ‘yes’, ‘no’, ‘don’t know’ respectively to a question 
about p(x1,...xn), and the fourth to the system itself being unable 
to make a prediction.  

We can have facts such as
temperate(paris,true) 
temperate(tokyo,unknown) 

and rules such as
 grow(Plant,Place,T):-  
  suitable_temperature(Plant,Place,T1),  
  suitable_soil(Plant,Place,T2). 
where the value of T is determined by truth tables specifying how the 
four possible values of T1 and T2 combine.

Such a rule in a student model is a program which predicts the 
student’s answer.  If we imagine that a student asserts that “Rice can 
grow in Kiev”, that is, 

grow(rice,kiev,true)  
and the system has the fact that 

suitable_temperature(rice,kiev,false)  
then the rule (within the student model) has to be changed (assuming 
that T1 and false do not combine to produce true, as they obviously 
shouldn’t).  In THEMIS this is achieved by adding or deleting a 
clause.  Broadly speaking, if the student model predicts true instead 
of false then the rule is too general and should be specialised by 
adding a clause, and vice versa.  The task now is to determine which 
clause to add or delete.  Deletion is relatively straightforward as we 
can work through the clauses of the rule to determine which has 
failed.  Finding a new clause is more complicated, because we must 
find not only the content of the clause but also where to place it in the 
rule so that, for example, variables interact as required.  In THEMIS 
this appears to be achieved by some search of a ‘refinement graph’ 
which defines relationships between predicates.

276    Computational Mathetics



8.3 Model maintenance techniques

As the previous discussion indicates, diagnosis in AI-ED 
necessarily involves a combination of analytical and inductive 

methods.  It would be much too inefficient to carry out a detailed 
analysis of every single observation (in isolation from other 
observations) and generally not feasible to wait until we have a 
sufficient number of observations for reliable induction.  Usually, it 
is necessary to apply analytical or inductive methods, as appropriate, 
to initialise a student model or whenever an event suggests it may 
be profitable, and thereafter expect to revise that model in the light 
of subsequent observations.  We might hope that the student model 
is reasonably accurate and that only minor revisions are required.  
Such a process is called student model maintenance.

A model only needs to be revised if it is not consistent with an 
observation.  The kind of revision required may depend on the kind 
of inconsistency.  As Kono, Ikeda and Mizoguchi (1994) point out, 
there are four causes of inconsistency:

Learning and forgetting: If the student learns or forgets 1. 
something, then her answers will contradict the model 
constructed before she learned or forgot.
Model inaccuracies: As diagnosis is difficult, the model 2. 
constructed will be based on various assumptions.  The 
inconsistency arises when these assumptions turn out to be 
unsound and hence the model is inaccurate.
Slips: Here the answer will not correspond with the model, 3. 
which nevertheless may actually represent the student faithfully.
Student inconsistency: The student actually has inconsistent 4. 
beliefs.
Generally, we would expect the student model to need 

revision in the first two cases but not in the third (assuming that 
an observation can be identified as a slip).  A revision would aim 
to change the student model so that it restores consistency with the 
new observation.  The fourth case is different: the student model 

8.3    Model maintenance techniques    277   



should represent the inconsistency, as this may be useful for tutorial 
purposes.  Therefore, 

B(c,B(s,p)) and B(c,B(s,not p)) 
may be allowed, but not

B(c,B(s,p)) and B(c,not B(s,p)) 
Notwithstanding the fact that it is hard to distinguish these four 
causes (because their manifestation as an observed inconsistency is 
the same), we can consider techniques for carrying out the revisions 
required in the first two cases.  These are based on the methods for 
belief revision discussed in section 7.2.4.

Once student model maintenance is considered to be a problem 
of revising a belief set so that consistency is recovered, then it 
falls within the scope of belief revision systems such as ATMS, as 
recognised in the systems of Huang, McCalla, Greer and Neufeld 
(1991), Kono, Ikeda and Mizoguchi (1994), Giangrandi and Tasso 
(1995) and Paiva and Self (1995).  However, AI-ED places special 
demands on the application of ATMS-like methods.  For example, 
Huang et al (1991) emphasise that the contents of belief sets in AI-
ED are often derived from various kinds of default assumption and 
therefore that maintenance techniques need to take account of the 
different kinds of justification (as used in ATMS).  Their method 
involves an integration of ATMS and model-based diagnosis.  

Paiva and Self (1995) use the idea of an ‘endorsement’, that is, 
an explicit reason or argument for an assumption, and an ordering 
of endorsements so that the more trustworthy assumptions are more 
likely to be retained during a revision.  As mentioned above, Kono 
et al (1994) also consider the case where an inconsistency does 
not lead to a revised consistent model but to a partitioning of the 
model into two or more ‘belief spaces’, each internally consistent 
but possibly inconsistent with others.  As discussed in section 7.2.4, 
students often do not seek a single unified set of beliefs immediately 
they encounter anomalous data.  Giangrandi and Tasso (1995) 
allow their system to maintain multiple models in parallel, with one 
model being considered to be the ‘current student belief model’ but 

278    Computational Mathetics



liable to replaced as such if it provides an inadequate prediction 
and explanation of student behaviour.  Whether this is to improve 
the system’s psychological validity or to recognise the difficulty of 
selecting the best model is not clear.

ATMS-like methods for student model maintenance take only 
implicit account of the fact that observations are made in sequence.  
Because a student (unlike a device) is (we hope) changing over 
time we might prefer to rely on the more recent observations.  It is 
possible to achieve this in a simple numerical fashion.  For example, 
the method of feature-based modelling applies a decay factor of 0.9, 
so that the impact of past observations progressively lessens.  If a 
more subtle analysis is required then it is likely to involve many of 
the formal techniques discussed previously.  For example, Shanahan 
(1993) uses the situation calculus and circumscription to generate 
‘temporal explanations’, that is, explanations which involve 
reasoning backwards in time from observations to causes.

We can illustrate some of the issues with a variant of the 
benchmark ‘stolen car problem’, namely: Imagine that on day 1 a 
student is taught concept c1.  On day 2 we might reasonably assume 
she still knows c1 (we might try to teach her concept c2 which has 
c1 as prerequisite).  On day 3 we find that she does not know c1.  
What could be the explanation?  The student may have forgotten c1, 
but we cannot say whether before or after we tried to teach c2.  This 
might be represented in the situation calculus as:
 1. Holds(believes(a,c1),d1)  
 2. not Holds(believes(a,c1),d3)  
 3. Follows(d3,d1)  
 4. Follows(t3,t1) ↔ t3=t1 or  
    Ǝaction,t2 (t3=result(action,t2) and  
      Follows(t2,t1))  
 5. not Holds(believes(x,c),result(forgets(x,c),t))  
 6. not Abnormal(action,f,t) → (Holds(f,t) ↔  
    Holds(f,result(action,t)))  
Axiom 4 is the definition of the Follows predicate, axiom 5 defines 
the forgets action, and axiom 6 is an attempt to address the frame 
problem.

8.3    Model maintenance techniques    279   



From axioms 1-4 and 6, we have:
 Ǝaction,t1,t2 (Abnormal(action,believes(a,c1),t1)  
  and s2=result(action,t1) and 
  Follows(t1,d1) and Follows(d3,t2)) 
From axiom 5, using circumscription with respect to Abnormal:
 Abnormal(action,f,t) ↔  
  (action=forgets(a,c1) and f=believes(a,c1) and 
  Holds(believes(a,c1),t))) 
and therefore
 Ǝt1,t2 (t2=result(forgets(a,c1),t1) and 
  Follows(t1,d1) and Follows(d3,t2)) 
that is, the student forgets c1 some time between d1 and d3.

We can, of course, add further axioms ( for example, concerning 
whether the student was paying attention on day 1, or whether some 
other student told her something which contradicted c1) to enable 
other explanations to be derived.  We may also use the notation 
in an abductive approach to generating explanations, in which the 
explanation has the new observation among its consequences (rather 
than being a deductive consequence).  However, the method does 
not tell us which observations require an explanation, that is, when 
it is appropriate to bring such complex machinery into play.

Also, we do not seem to have capitalised on the fact that 
observations of student behaviour do not reach the system as a 
stream of unpredicted events.  Generally, there has been some system 
action between observations.  This action has been determined by 
the system precisely because it is intended to have some effect on 
the student.  This intended or predicted effect is derived from some 
theory of instruction and learning.  To the extent that the intention 
is satisfied, the subsequent observation has been predicted.  At the 
least, we might hope that the analysis which determines the system 
action would serve to guide the subsequent diagnostic process.  
Therefore, we would expect that diagnosis in AI-ED should be 
integrated with theories of instruction and learning.  So far, this has 
not been considered in any satisfactory detail.  Diagnosis is generally 
conceived to be an independent activity of an AI-ED system.

280    Computational Mathetics



8.4 Goal-driven diagnosis

As the illustrations of model-based diagnosis (section 8.1.1) and 
other methods showed, we can obtain many different diagnoses 

(each consisting of several candidates) capable of explaining 
particular observations, by choosing different components and 
expansions in terms of which to carry out the diagnosis.  Which of 
these diagnoses, and which candidates within them, is best?  All of 
the candidates are sound, that is, they all suggest mode assignments 
which are consistent with the observations.  At the moment, there is 
no reason at all for preferring one to another.

We can introduce one means of discrimination by assigning a 
priori probabilities to individual mode assignments.  For example, 
if [multiply,ok] is more probable than [multiply,no_carry] 
then in general we would prefer candidates with the first rather than 
the second assignment.  This would enable the candidates within a 
diagnosis to be ranked and for the most probable candidates to be 
found first.  However, it does not tell us which diagnosis is best.  In 
the following, therefore, we will make the unrealistic, simplifying 
assumption that all candidates are equally probable and focus only 
on choosing between diagnoses.

There are two considerations to bear in mind when choosing 
between diagnoses.  One is the computational cost of obtaining the 
diagnoses, as we are here imagining the diagnosis being carried 
out on-line.  The second is the payoff, that is, the extra pedagogical 
leverage obtained from a ‘deeper’ diagnosis.  To be precise, it is the 
‘predicted cost’ and ‘predicted payoff’ which must be considered, 
as we are not suggesting that we obtain all the diagnoses and then 
apply our cost-payoff evaluations to select between them.  Rather, 
we imagine a system having to decide whether to seek a better 
diagnosis, after determining a provisional one.

The payoff cannot be estimated without considering the options 
for action which the system has available as a result of carrying out a 
diagnosis.  There is no standard notation for expressing such actions 

8.4    Goal-driven diagnosis    281   



so let us adopt, for illustrative purposes only, a production system 
notation, such as:

[[ld,ok]] → continue1  
[[multiply,no_carry]] → action1  
[[ld,incorrect]] → action2  
[[borrow,no_decrement], [multiply,ok]] → action3  
[[subtract,faulty]] → action4  

We are not here concerned with the actions themselves but only 
with the left-hand sides, which are in terms of diagnosed mode 
assignments.  (There will be other conditions, concerning, for 
example, the history of interactions, but these are not determined by 
the diagnosis process and so are omitted here).

Given the diagnosis [[ld,incorrect]] (as first obtained in 
section 8.1.1), this ‘instructional plan’ would recommend only 
action2.  However, as we can see, if we obtained a deeper diagnosis 
then action1, action3 and action4 might also be recommended.  
The system’s dilemma is whether to invest the extra computational 
effort on obtaining a more detailed diagnosis in the hope that other, 
and more useful, actions become possible.

As far as the notation above indicates, any one action is as good 
as any other and therefore, having found one recommendation (such 
as action2) there is no reason to seek another.  What is missing is 
a representation of the intuition that, say, action3 (which we might 
imagine to be a piece of remediation directed specifically towards 
the no_decrement bug) is a more useful action, if it is appropriate, 
than action2 (which might be a general ‘try again’ action when an 
answer is considered to be wrong but we have no idea why).  So, 
let us attach weights (on a scale 1-100) to each rule to indicate its 
usefulness:
90:[[ld,ok]] → continue1  
70:[[multiply,no_carry]] → action1  
10:[[ld,incorrect]] → action2  
80:[[borrow,no_decrement], [multiply,ok]] → action3  
25:[[subtract,faulty]] → action4  

Now we have one recommended action, with weight 10, but other 
potential actions of greater weight.

282    Computational Mathetics



If the system decides to expand ld (as before) and so obtains the 
second diagnosis
 [[[multiply,ok], [subtract,faulty],  
  [right_part,irrelevant]], 
  [[multiply,no_carry], [subtract,faulty], 
  [right_part,irrelevant]],...] 
then some of the candidates recommend action1 and some action4.  
How can we now calculate the ‘payoff’ from these potential actions?  
Let us assume that all the candidates are equally probable.  (If we 
had a priori probabilities for the mode assignments then we could 
do the calculations but this does not affect the point here.)  Then 
the probability of a particular mode assignment after a diagnosis is 
given by the proportion of candidates which make that assignment.  
For example, the probability of [subtract,faulty], according to 
this second diagnosis, is in fact  9/13.  

We can estimate the payoff of action4 as the product of the 
weight of the rule and the probability that it holds, that is, 25 x 9/13 
= 17.3.  Similarly, the estimated payoff of action1 is 70 x 1/13 = 
5.4.  The payoff of action2 obtained by the first diagnosis was 10.  

But, again, action3 might be applicable after a further expansion 
(of subtract) to obtain a third diagnosis.  For a rule (such as that for 
action3) with multiple conditions, the probability is given by the 
proportion of candidates in which all the specified mode assignments 
are made, in this case 2/15.  So, the payoff of action3 is 80 x 2/15 = 
10.7.  Assuming that this 10.7 is the greatest estimated payoff for the 
third diagnosis, then we could conclude that the second diagnosis 
may have been worth the effort of obtaining but not the third (or any 
further diagnoses, probably).

The details of this example are not important but it does illustrate 
some general points about what needs to be specified before any 
decision about the ‘best’ diagnosis can be made.  We must specify 
an instructional plan defining what a diagnosis is to be used for and 
attach measures of ‘usefulness’ to the various actions.  We need to 
consider the probabilities of the candidate diagnoses and use these 
in some way to determine the overall ‘payoff’ from a diagnosis.  

8.4    Goal-driven diagnosis    283   



So far, we have still only outlined a method for selecting between 
diagnoses having obtained them.  We have not yet addressed the 
question of how a system could, having obtained one diagnosis, 
determine whether a further diagnosis is likely to be a better one.  In 
general, this involves the calculation of conditional probabilities - for 
example, to determine the probability of [borrow,no_decrement]
given that [subtract,faulty].  This would appear to be suitable 
for the application of Bayesian network techniques.

In AI generally, it is only relatively recently that it has been 
recognised that diagnosis should be driven by the goals for which 
it is being carried out (Freidrich, 1993).  Such an obvious fact was 
overlooked because in the domains in which diagnosis was carried 
out in AI the goal is implicitly clear - it is to identify and replace 
faulty components in a device.  

More globally, however, the goal might be considered to be to 
minimise the cost in restoring a working system.  In AI-ED the short-
term goals (determining an instructional action) may be more varied 
and the longer-term goals (that the student learns) more complex.  
Without an analysis of such goals any diagnostic method is liable 
to produce a very large number of candidates, most of which are 
irrelevant to the goals of the system.  A number of investigations 
of diagnosis-repair systems which tightly couple diagnosis and 
planning have been carried out (reviewed by Freidrich, 1993) but 
it is not clear that any of them are suitable for integrated diagnosis-
action AI-ED systems.

8.5 Plan diagnosis

So far our consideration of diagnosis has been entirely restricted 
to the belief component of our framework, whereas (in principle) 

we might require diagnosis of any other component (monitors, goals, 
and so on) as well.  In practice, the only other component which has 
been the subject of any detailed diagnostic analysis is that of plans, 
for plan recognition is a significant subfield of user modelling.

284    Computational Mathetics



Often, an AI-ED system needs to interpret observations in terms 
of what the student is doing or aiming to do rather than what she 
believes or knows, because the system may intend to discuss plans 
and goals directly or because by re-directing the student’s plans the 
system may lead her more effectively to the desired beliefs.  The 
problem of identifying the student’s plans is unfortunately complex 
for the following reasons:

Unlike planning itself, plan recognition is inherently a multi-1. 
agent process because it involves one agent (the system) 
reasoning about the plans of another (the student).
It usually involves uncertain reasoning because a set of observed 2. 
actions rarely uniquely identifies a plan (although definite 
conclusions may still be drawn even after uncertain reasoning).
Students are particularly prone to leave out actions, to insert 3. 
faulty actions, to interleave actions from some other plan, and 
often to have no plan anyway.
Many approaches to plan recognition transform it into a 

parsing problem.  A grammar is defined to specify how plans are 
decomposed into actions and sub-actions, and a particular sequence 
of observations is regarded as a sentence to be parsed with respect to 
this grammar.  Formally, this is no doubt a sufficient characterisation 
of the problem, but we will instead first describe a method developed 
by Kautz (1990) which is closer to our view of diagnosis.

The method requires the specification of three kinds of 
information:
1. The observations themselves, for example,

Occurs(e9,make-pasta)  
Ǝe Occurs(e,make-noodles) and t(e)=17  

that is, event e9 is an instance of type make-pasta, and an event of 
type make-noodles occurred at time 17.  Such a description is based 
on a general theory of action and time (Allen, 1984) and inherits 
from it axioms such as

Ɐe,i During(t(sub(i,e)),t(e)) 
that is, the time of the i-th subaction of event e occurs during the 

8.5    Plan diagnosis    285   



time of event e.  (We might imagine a student using a simulation to 
learn how to cook or to perform some similar activity.)
2. An action hierarchy, that is, a complete description of the ways 
in which an action can be performed and of the ways in which an 
action can be used as a step of a more complex action.  These are 
specified as axioms of specialisation and decomposition :
 Ɐe Occurs(e,make-pasta) → Occurs(e,prepare-meal)  
 Ɐe Occurs(e,make-fettucini) →  
  Occurs(e,make-noodles)  
 Ɐe Occurs(e,make-spaghetti) →  
  Occurs(e,make-noodles)  
 ...  
 Ɐe Occurs(e,make-pasta) →    
  Ǝt Occurs(sub(1,e),make-noodles) and  
   Occurs(sub(2,e),boil) and  
   Occurs(sub(3,e),make-sauce) and  
   object(sub(2,e))=result(sub(1,e)) and  
   Holds(noodle(result(sub(1,e))),t) and  
   Overlap(t(sub(1,e)),t) and  
   During(t(sub(2,e)),t)  
 ...  
The decomposition axioms specify the subactions, their preconditions 
and effects, and constraints on temporal relationships.  Of course, 
subactions may also be decomposed.  In addition, the system needs 
a set of disjointedness axioms, for example,
 Ɐe Occurs(e,make-fettucini-alfredo) not-and 
  Occurs(e,make-fettucini-marinara) 
3. A set of ‘simplicity constraints’, for example, “minimise the 
number of top-level actions”, to choose between interpretations.  
These are represented as second order predicate logic sentences, 
which are instantiated to first-order sentences for any particular 
case.

Before recognising a plan, the action hierarchy is supplemented 
by applying circumscription in order to derive axioms which specify 
the assumptions that (a) the known ways of performing an action are 
the only ways and that (b) all the possible reasons for performing an 
action are known:

286    Computational Mathetics



 Ɐe Occurs(e,prepare-meal) →  
  Occurs(e,make-pasta) exc-or  
  Occurs(e,make-meat) 
 ... 
 Ɐe Occurs(e,make-noodles) →  
  Ǝa Occurs(a,make-pasta) and e=sub(1,a) 
 Ɐe Occurs(e,make-marinara) →   
  Ǝa (Occurs(a,make-fettucini-marinara) and 
    e=sub(3,a)) or 
     (Occurs(a,make-chicken-marinara) and  
    e=sub(3,a)) 
Although there is no general method for carrying out circumscription, 
these axioms are easily derivable by special-purpose algorithms 
which retain the benefits of having a formal semantics for the 
process.  

Now, given an observation, such as
 Occurs(e1,make-fettucini) or  
  Occurs(e1,make-spaghetti)   
that is, that the student is making fettucini or spaghetti (but we’re not 
such which), we may infer

Ǝe Occurs(e,make-pasta)  ..(1)
and hence that, for example,

Ǝe Occurs(sub(2,e),boil)   
So, even though particular actions and plans may not be fully 
identified, specific predictions may be made.  If we now observe:

Occurs(e2,make-marinara)  
then the system can infer, from the specialisation axioms, that

Ǝe Occurs(e,make-pasta) or Occurs(e,make-meat) 

Given the previous inference (1), the simplicity constraint mentioned 
above would eliminate the second disjunct of this inference.

Thus, the system may monitor the student’s actions and attempt 
to derive the student’s plans.  The virtues of this approach are 
that it provides a formal theory with a precise semantics for the 
plan recognition process by specifying axioms (supplemented by 
circumscription) from which conclusions are derived deductively.  
It thus integrates plan recognition with other aspects of student 

8.5    Plan diagnosis    287   



modelling discussed previously, instead of regarding plan recognition 
as a rather specialist sub-problem for which different techniques are 
needed.

However, many criticisms are possible (most of them echoing 
discussions of the diagnosis of belief):

It may be unreasonable to demand pre-specified axioms of • 
specialisation and decomposition for all possible plans.
Relying on nonmonotonic reasoning, the method can recognise • 
one or more plans but cannot decide that one plan is more 
likely than another.  This would appear to require probabilistic 
methods (Carberry (1990), Charniak and Goldman (1993)).
The method takes no explicit account of what a plan is being • 
recognised for.  Increasingly detailed and bizarre plans can be 
hypothesised to explain any set of observations, and the method 
provides no way of determining when a plan has been diagnosed 
adequately for whatever purpose the system has.
The method assumes that the plan to be recognised is indeed one • 
that is implicitly encoded in the definitions.  It cannot recognise 
a plan which is misconceived or malformed.
What precisely is a ‘plan’ anyway that it makes sense to try to • 
recognise it?  If situationists are right that apparently planned 
behaviour is actually an emergent property of interactions within 
contexts, then perhaps plan recognition is a futile ambition.

Many of these points have been considered within the field of plan 
recognition but we will consider only the problem of diagnosing 
faulty plans.  The field of plan recognition developed from the 
problem of understanding the goals of characters in narratives in 
order to enable natural language understanding.  In that context, it is 
reasonable to assume that characters have (correct) plans which it is 
sensible to try to discover.  In AI-ED, however, students often have 
faulty or vaguely formulated plans and it is in precisely that case that 
plan diagnosis may be more useful.

As with knowledge diagnosis, we may attempt plan diagnosis 
with respect to pre-specified incorrect descriptions (buggy plan 

288    Computational Mathetics



catalogues) as well as correct ones, and we may try to generate 
faulty plans by dynamically modifying known correct plans.  
Calistri-Yeh (1991) claims to present a “complete classification of 
plan-based misconceptions” which can be used to generate faulty 
plans.  Plans are considered to have four components - parameters, 
preconditions, steps and temporal constraints - each of which may 
be violated or have substituted, missing or extra parts.  This gives 
sixteen categories, which may apparently be reduced to ten, as some 
are indistinguishable in practice.  

A faulty plan is diagnosed by modifying a standard heuristic 
search to add, delete or substitute parts of the plan hierarchy graph 
(somewhat similar to methods for modifying programs (section 
8.2.3)).  The probability of a misconception is a function of its 
similarity (closeness to the correct version), obscurity (unfamiliarity 
to the planner), complexity, the previous discourse, and other factors.  
The system is said to select the best explanation for 98% (or 57) of 
58 real-world examples of plan-based misconceptions, 80% within 1 
second, the remainder within 2 seconds, despite having only partially 
implemented heuristics.  “Once the remaining heuristic features are 
added ... the probabilities should improve even more”(!).

However, the method diagnoses the components of a plan, not 
the plan or goal itself, which is assumed to be known to the system 
and the user.  Plan recognition is usually understood to mean that 
the user’s plans have to be inferred from his interactions.  Problems 
arise because of the imprecision of the interactions, the difficulty of 
relating interactions to plans, and the possible conflict with the current 
user model.  Eller and Carberry (1992) attempt to recognise faulty 
plans by defining a set of ‘meta-rules’ which relax these components 
so that previously blocked explanations can be considered.  For 
example, one meta-rule states:
 If (the system believes that acts A1 and A2 are   
  each different ways of doing act A3) and  
 (the system believes that the conditions for   
  act A0 to be part of A2 are satisfied) and  
 (the system can ascribe to the user both of   

8.5    Plan diagnosis    289   



  these beliefs) and  
 (the system cannot ascribe to the user the   
  belief that act A0 is not part of A1)  
 Then the system may infer A1 from A0.  

As this example illustrates, the attempt to divorce plan 
recognition from other kinds of diagnosis is rather misguided.  It 
depends upon considering the agent’s beliefs about the domain and 
one another, and arguably its output should be in terms of the agent’s 
beliefs, because it may be more profitable to address the underlying 
misconceptions which led to faulty plans than the plans themselves.  
Kass (1991) specifies a set of rules to make default inferences about a 
user’s beliefs from their interactions with an advisory expert system, 
many of these rules being derived from principles of conversational 
constraints.  For example, two such rules state (adapting to the 
student modelling context):
 Tells(s,c,p) → B(c,B(s,p)) and   
  Ɐq (Component(q,p) → B(c,B(s,q)))  
that is, if the student states a proposition then the system believes 
that she believes it and all components of it;
 Problem(c,p) and Subproblem(q,p) and not Do(s,q) →  
  B(c,(not B(s,Problem(c,p)) or  
   not B(s,Subproblem(q,p)) or  
   B(s,not Can-do(q))))  
that is, if the system sets a problem p for which a subproblem q must 
be solved but the student does not attempt to solve the subproblem 
then the system believes that either the student does not believe that 
p is the problem or she does not believe that q is a subproblem of p 
or she believes that she cannot solve the subproblem.  If (as is likely) 
the system cannot resolve this indeterminacy then it might form the 
basis for the subsequent dialogue with the student.

Once plan recognition is seen to be integrated with other diagnostic 
processes, then all of the previous discussions can be related to 
the problems of diagnosing plans.  For example, the diagnosis of 
plans, like all diagnosis, should be driven by the purposes for which 
the diagnosis is needed.  Waern (1994) provides a proof-theoretic 
formulation of the “plan recognition for a purpose” slogan.  Instead 

290    Computational Mathetics



of viewing an observation OBS as something to be explained by some 
hypothesis H added to some theory T, that is,

T + H → OBS

it is viewed as a condition on a hypothesis or proof, where what is to 
be proved is the suitability of a possible next action A, that is,

T + H + OBS → A

Consider the following situation.  A student is given a sequence 
of steps to solve a problem.  The system aims to keep quiet while 
she is solving the problem but observes that the student leaves the 
intended path.  The system may remain quiet or provide advice on 
how to get back on track.  The ‘right’ response depends on why 
the student went off track.  If the student still has the original goal, 
the deviation may be intended or not - she may have thought of a 
better way, or may have made a slip.  Advice may be welcome in the 
second case but not the first.  If the student has changed her goal, 
then perhaps the system should re-plan and present new advice.  If 
the deviation is small, the system probably does not need to give 
advice.  If the deviation is large and unintentional, maybe advice is 
needed.  All this knowledge would be expressed in the theory T:
 deviation(large) and unintentional-deviation → 
  give-advice(yes) 
 new-goal and intentional-deviation →  
  give-advice(yes) 
 old-goal and intentional-deviation →  
  give-advice(no) 
 deviation(small) → give-advice(no) 
 ... 

If we observe a large deviation, then we seek hypotheses to 
provide proofs of the two possible actions:

T + H1 + deviation(large) → give-advice(yes) 
T + H2 + deviation(large) → give-advice(no) 

Waern (1994) derives proofs in the obscure (to me) intuitionistic 
sequent calculus for Gentzen’s LJ, but we can see that proofs are 
possible if

H1 = unintentional-deviation 
H2 = intentional-deviation and old-goal 

8.5    Plan diagnosis    291   



A reasonable preference mechanism will lead to the system deciding 
to give advice.  The general point is that the available actions 
determine the hypotheses that are sought, rather than (as has been 
the case before) the hypotheses are determined and then the available 
actions help choose between them.

We may continue our relaxation of the strict demands of the 
Kautz and Allen formulation, with which we began this section, 
by considering the method of ‘situated plan attribution’ (Hill and 
Johnson, 1995).  Here, plans are not regarded as rigid prescriptions 
for actions but as rather fallible orientations for action.  In many 
cases, the need for an AI-ED system to consider plans is indicated 
by the environment: if the student’s directives are rejected then her 
plan must be in error; if the directives are not rejected and have 
the desired effect, then it must be correct or, at least, it requires no 
tutorial intervention.  When a plan is in error, then the analysis could 
focus on what is required to overcome the problem, not on what 
caused the problem.  

Thus, the method does not attempt to build a cognitive model of 
the student’s plan, as the use of the phrase ‘plan attribution’ rather 
than ‘plan recognition’ is intended to indicate.  The method’s notion 
of a plan is closer to that of situationists.  Students’ actions are, 
to some extent, responses to the evolving situation and “therefore 
tutoring systems should attend to the student’s situation as well and 
direct less effort at trying to guess what is going on in the student’s 
head”.

At this point, it seems necessary to remind ourselves that 
diagnosis is inherently difficult and we cannot and need not expect 
or aim for omniscience, and this is especially the case for diagnosing 
plans and other metacognitive constructs.  If reflection is (in the 
everyday sense) quiet, careful and long contemplation then there 
is little chance that an AI-ED system would be able to diagnose a 
student’s reflective processes in the way that we have imagined for 
problem-solving processes (which is difficult enough), as there are 
simply not enough observations to permit reliable analysis.  ‘Internal 

292    Computational Mathetics



reflection’ is not an activity for which moment-to-moment student 
modelling is possible or appropriate.  Interruptions to “tell me what 
you are thinking” may well be counter-productive, because they will 
interfere with on-going cognitive activity.

However, in some situations, it may be beneficial to externalise 
metacognition.  There is plenty of scope for debate on this topic, as 
it concerns the nature of metacognition and whether it can or should 
be made explicit.  Some systems (for example, Singley, 1990) 
require a student to express the plan they intend to carry out, before 
specifying the individual actions (or sub-plans) which constitute the 
plan.  Obviously, this considerably eases the plan recognition task.  
The difficulties lie in designing a language in which the plans may be 
expressed (by a student) and in incorporating the specification of the 
plan into the problem-solving activity in a non-obtrusive manner. 

 The AI-ED system’s role might then be to determine when it is 
appropriate to externalise planning and other meta-level processes 
and to share in their execution.  For example, if the student model 
indicates that the student is confused (maybe it contains both 
B(c,B(s,p)) and B(c,B(s,not p))), then it may be more rational 
for the system to conclude nothing (let alone embark on a risky 
reason maintenance exercise) except perhaps that one or both is 
wrong and to engage the student in a reflective discussion of the 
issue.  Similarly, if the student model indicates that in the current 
problem-solving situation one of a number of rules could have been 
applied, rather than attempting to second-guess which (if any) has 
in fact been applied, a system might do better to enter a meta-level 
where it is discussed explicitly.  

Often, such a discussion may bring into the open issues of which 
a student is only implicitly aware.  For example, in algebra problem-
solving, performance might lead to the student model containing 
B(c,B(s,f)), that is, to the system believing that the student 
‘believes’ a particular fault f.  Whether or not the student ‘really 
believes’ such a fault is debatable: perhaps it should be debated with 
the student.  Payne and Squibb (1990) show that students do have 

8.5    Plan diagnosis    293   



sufficient metacognitive awareness that they are able reliably to 
assign levels of confidence to their answers.  In some cases, a wrong 
answer (which is actually believed to be wrong by the student) is 
evidence that the student believes that she does not know something 
(B(s,Ǝp not B(s,p))), not that she genuinely believes something 
which is in fact incorrect.  Different pedagogic interactions are surely 
needed for such different situations.

8.6 Interactive diagnosis

A picture of diagnosis is evolving which considers two agents, 
the diagnoser and diagnosee, to be involved in an on-going 

interaction to develop an explanation of the latter’s problem-solving 
behaviour.  AI work on diagnosis obscures a fundamental difference 
from diagnosis in AI-ED: in AI-ED the system undergoing diagnosis 
(the student) is not, or should not be, a passive agent with no interest 
in the process of diagnosis, whereas in AI the device being diagnosed 
is incapable of any interest in the process.  As the student herself has 
the most to gain from a successful diagnosis, it seems advisable to 
engage her in the process.  

We may also argue that self-diagnosis is an important 
metacognitive skill which students should practise.  Moreover, the 
kinds of conceptualisation used in AI-ED diagnoses tend to be of 
a nature which students would benefit from understanding, unlike, 
perhaps, the case of medical diagnosis, which is otherwise analogous, 
where diagnosis may involve the use of specialist medical terms 
which, in general, patients do not need fully to understand.

Therefore, there appears to be every reason for viewing AI-ED 
diagnosis as an interactive process involving both system and student, 
not as an analytical process where the system does all the analysis 
of student behaviour.  However, such a view does not magically 
solve the problems of diagnosis, for it does not directly tell us what 
the interaction should be about.  In this respect, all the diagnostic 
techniques discussed earlier are potentially relevant for they may 

294    Computational Mathetics



help focus the diagnostic interaction.  As we have seen, AI-ED 
diagnosis is an inherently difficult process because of the ambiguity 
of the observations.  The technical aim might be to determine the 
right balance between analysis and interaction.

At the moment, there are no formal treatments of this view of 
diagnosis, only exploratory studies.  Wu (1991), Cohen, Schmidt 
and van Beek (1994) and Elzer, Chu-Carroll and Carberry (1994) 
consider the nature of clarification dialogues, that is, dialogues 
initiated to resolve some diagnostic ambiguity.  If a diagnosis 
suggests two candidates c1 and c2, then it might be better not to 
attempt a deeper analysis to eliminate one of them, but to engage the 
student in some interaction about them.  The simplest option is to 
present the student with a menu of candidates from which to select.  
This is generally unsatisfactory because the candidates may be too 
detailed or technical for direct presentation, and in any case would 
lead to boring interactions.  

Generally, systems attempt to identify some key difference 
between the candidates and to ask a direct question about that.  For 
example, given the two candidates

[[sub,borrow_no_decrement]] 
[[sub,smaller_from_larger]] 

for the observation {<60-45, 25>} the system might ask “Did you 
forget to take 1 off the 6?”.  Cohen et al (1994) use a hierarchy of 
plans to enable the identification of a ‘key event’, that is, an event 
which would be part of one plan but not the other.

In general, there are more than two candidates to discuss.  
Therefore, it is necessary to devise techniques to enable some 
optimum partitioning of the set of candidates, as it would be too 
tedious to discuss them a pair at a time.  This is a tricky little exercise 
involving the consideration of the probabilities of the candidates and 
the student’s likely response to any query.  Cohen et al’s algorithm 
selects a question for which the minimal number of candidates predict 
a ‘no’ answer, the rationale being that if the answer is indeed ‘no’ 
then the system may eliminate the maximum number of candidates 

8.6    Interactive diagnosis    295   



and if it is ‘yes’ then the system stays ‘on the right track’ (or at 
least gives the student the subjective impression of a more coherent 
dialogue). 

The problem of generating an appropriate question as part of 
a clarification dialogue merges with that of determining the next 
problem to pose to the student, which has been studied within AI-
ED (for example, Evertsz (1989)).  Of the many instructional actions 
open to a system, one is to present a new problem to aid the system 
rather than the student, by distinguishing between candidates.  So, 
for example, a system with the above two candidates for subtraction 
might generate a next problem, such as “What is 61-45?”

This is analogous to the problem of determining the next 
measurement to make in device diagnosis.  De Kleer and Williams 
(1989) suggest using the problem with the ‘minimum entropy’, that 
is, the one which provides the maximum information to discriminate 
between candidates.  However, this does not directly tell us which 
problems to consider - an exhaustive search of the search space, 
even for subtraction, would be infeasible.  The task is to determine 
a problem for which (in the case of two-candidate diagnoses) 
candidate c1 predicts a student answer a1 and candidate c2 predicts 
a2, where a1 and a2 are different.  A complete analytic solution 
involving the symbolic execution of the hypothetical components 
corresponding to the candidates would be impractical for dynamic 
problem generation.  

Instead, we may develop a heuristic method (in the sense that it 
orders the search space but does not eliminate possible solutions) 
as follows.  Given the above two subtraction candidates, we might 
imagine that good diagnosticians would not generate the next problem 
by considering new inputs at random or in a fixed sequence but would 
tweak the previous problem, that is, they would find the minimum 
change sufficient to discriminate between the candidates.  Here, it is 
intuitively clear that it is better to change the 0 or 5 rather than the 6 
or 4.  This intuition can be made more precise by considering which 
components are affected by which inputs (Self, 1993).

296    Computational Mathetics



Still, even this interactive view of diagnosis retains an asymmetry 
which may be disapproved of by those who favour egalitarian 
educational interactions.  We still have one agent essentially being 
responsible for diagnosis and the other agent being diagnosed.  In the 
case of truly collaborative dialogues, in which two or more agents are 
working and learning together, then all agents may need to diagnose 
one another, and (in principle) take account of the diagnoses all other 
agents have of themselves, and so on.  Needless to say, there is little 
precise description and formulation of such nested diagnoses.  But it 
leads us on to consider the nature of dialogue in AI-ED.

8.6    Interactive diagnosis    297   



9

Dialogue

We have increasingly come to regard communications between 
students and AI-ED systems as some form of dialogue between 

agents, rather than as actions performed by one unto another.  To 
be sure, there may be significant differences in the beliefs, plans 
and capabilities of the agents concerned, but there are also potential 
benefits in regarding the interactions as balanced exchanges of 
opinion aimed towards some learning objective.

It is a pity that criticisms of ‘old-fashioned tutoring systems’ have 
come to equate ‘communication’ with ‘transmission’, because the 
former, but not the latter, is necessarily a multi-agent activity.  One 
can transmit a message to the stars seeking intelligent life but one 
cannot (necessarily) communicate it.  Any communication requires 
an agent to send and an agent to receive.  Reception is not a passive 
process: it requires the receiving agent to recognise the sender’s 
intention to communicate and to understand the meaning of the 
communication.  Communication is very rarely a one-shot, one-way 
action.  All but the very simplest communicative act involves some 
kind of dialogue, if only to confirm receipt of the communication.  
For example, if you tell someone a telephone number its receipt is 
usually acknowledged or echoed back.  

In general, any communication involves the use of an agreed-
upon language or set of conventions for communicating and the 
detailed coordination and monitoring of the components of the 
communication.  Dialogue management will involve many of 
the concepts previously discussed.  For example, it will require 
consideration of the agents’ beliefs and of their beliefs about one 
another.  The following example, adapted from Wilks and Ballim 

298    Computational Mathetics



(1987), illustrates some of the issues.  Imagine that the system c is 
mediating an interaction between two medical students a and b and 
that we have:
Beliefs(c) =   
 { Type(thalassemia,genetic-disorder),  
   Medically-informed(x) →  
  B(x,Type(thalassemia,genetic-disorder)),  
   Average-person(x) →   
  B(x,Type(thalassemia,disease)),  
   Type(x,genetic-disorder) and Suffers(a1,x) and  
   Suffers(a2,x) and Child(a1,a2,a3) →  
   Suffers(a3,x), ... }  
Beliefs(c,a) =   
 { [Medically-informed]  
   Suffers(fred,thalassemia),  
   Suffers(mary,thalassemia), ... }  
Beliefs(c,b) =   
 { Suffers(fred,thalassemia),  
   Suffers(mary,thalassemia), ... }  
The system believes a to be medically-informed but not b.  From 
such student models, the system might reason that

B(a,Type(thalassemia,genetic-disorder))  
B(a,Child(fred,mary,x) → Suffers(x,thalassemia))  
B(b,Type(thalassemia,disease))  

that is, that a will reason that a child of Fred and Mary will suffer 
from thalassemia but that b will not (on the default assumption that 
b is a not a ‘medically-informed’ student).  

The system could then carry out independent dialogues with the 
two students but neither such dialogue would be of much interest to 
the other student.  Instead, the system could take account of what 
one student believes the other student believes.  For example, the 
system might consider that  a believes b is also medically-informed 
(making the default assumption that b is the same as a unless a has 
evidence otherwise) and thus that

B(a,B(b,Child(fred,mary,x) →  
Suffers(x,thalassemia)))  

Then, for example, the system might engage a in discussing with b 

9    Dialogue    299   



why b’s conclusions differ from those expected by a of b.  In general, 
the point is that in any interaction between two or more agents it may 
help (or be essential) for an agent to hold beliefs about what may be 
believed by the other agent(s).

A dialogue between an AI-ED system and a student does not 
have to be in natural language but we can begin to get some idea of 
the nature of the problem by first considering the enormous volume 
of work carried out in computational linguistics, natural language 
processing and in linguistics, generally.  Allen (1995) distinguishes 
the following kinds of knowledge needed for natural language 
processing:

Phonetics - the production, perception and analysis of speech • 
sounds.
Morphology - the form and structure of words.• 
Syntax - the acceptable arrangement of words in sentences.• 
Semantics - the meaning of words and sentences.• 
Pragmatics - the use of sentences in social contexts.• 
Discourse knowledge - the use of sequences of sentences.• 
World knowledge - general knowledge of the world and other • 
people, independent of language use.
Texts on computational linguistics are concerned mainly with 

syntax and, to a lesser extent, semantics, reflecting their relevance 
to typical computer applications (such as machine translation) and 
their relative tractability.  Computational mathetics needs to consider 
syntax and semantics as well but does not seem to have any special 
demands of its own.  An AI-ED system might need to be able to 
handle a student input such as “Rice cannot grow on a hillside unless 
it is terraced” but will use standard techniques to do so.  For these 
aspects, we can content ourselves with references to standard texts 
(such as Allen (1995), Gazdar and Mellish (1989)), bearing in mind 
that as students may not yet be able to use domain terminology 
correctly there may be more badly-formed inputs than normal.  

Of more specific concern to computational mathetics are the 
more difficult issues of pragmatics and discourse, because we 

300    Computational Mathetics



are concerned with the structure of lengthy interactions between 
systems and students and with the effect that such interactions may 
have on the participants’ beliefs and goals.  We can anticipate that 
a real teacher-student dialogue such as that below (Hull, 1985) will 
present quite a challenge:

T: Who knows about the structure of the atom? (No reply)
T: No?  Well, ... [brief explanation] ... So an atom is mostly ...? 

(Pause)  What’s in between?
S: Air.
T: Air is made up of atoms.  What’s in [indistinct]?
S: How do you split them?
T: We’re interested in ...
S: How did they find out about the nucleus and [indistinct]?
T: It would take too long to tell ... All right, then ... there was a 

chap called Rutherford ... he produced a sheet of atoms ...
S: How?
T:  ... and bombarded it with particles.
...

In this chapter, we will first discuss general issues concerned 
with dialogue and then focus on aspects specifically relevant to AI-
ED.  When this research relates to dialogue with computer systems, 
it has usually been with respect to a general user, but we will focus 
on students in this chapter.  The general discussion is necessarily 
rather superficial, as the topics are very broad but still controversial, 
with little agreement on technical formulations (Allen discusses 
these topics only in his last two chapters and Gazdar and Mellish 
hardly at all).

There is also a perennial debate about the extent to which thinking 
and learning are inherently related to dialogue.  The everyday views 
that 

language follows from thought, that is, we think and then • 
express thoughts, 
thought follows language, that is, the language we use • 
determines what we think, 

9    Dialogue    301   



thought and language are inter-dependent, • 
language and thought are identical, the latter being only an • 
internalised language, 

and so on, provide philosophers, psychologists and linguists with 
fertile ground, but are outside the scope of computational mathetics.  
To the extent that such discussions agree that dialogue promotes 
learning they support our consideration of aspects of dialogue.

9.1 Discourse structure

Because AI-ED systems are concerned with analysing inputs 
within the context of an on-going interaction, we are concerned 

with what in natural language understanding is called discourse 
analysis.  First, it should be noted that the prefix is dis- (indicating 
reversal) rather than di- (indicating two) as in dialogue.  This indicates 
that discourse means (a speech) ‘running to and fro’, typically by 
one person.  Even so, the techniques developed for (single-agent) 
discourse will be useful for (multi-agent) dialogues.

Discourse analysis involves the partitioning of a sequence of 
sentences into segments each of which is locally coherent, in that each 
sentence in a segment is concerned with the same topic.  Segments 
are considered to be hierarchically-organised so that they may be 
temporarily suspended during an interrupting sub-segment.  Within 
a segment it is assumed that standard techniques of computational 
linguistics can be applied.  The main difficulty lies in identifying 
transitions between segments.  In English, cue phrases (“on the other 
hand”, “incidentally”, “firstly”, “in particular”, and so on) often 
mark the beginning and, less often, the end of segments.  One of the 
early studies of discourse (Grosz, 1977) looked at an expert helping 
an apprentice assemble a water pump.  The discourse followed a 
plan structure to assemble the pump, with segments corresponding 
to components of the plan.

Cue phrases signal the intentional structure of the discourse.  
For example, “in particular” and “for example” indicate a new sub-

302    Computational Mathetics



segment which elaborates upon the embedding segment, and “on 
the other hand” and “similarly” introduce a parallel construction.  
Discourse analysis involves the identification of such relationships 
between sentences and segments.

The Rhetorical Structure Theory (RST) of Mann and Thompson 
(1986) has been influential in providing a taxonomy of such relations.  
RST describes text structure in terms of ‘nuclei’ and ‘satellites’.  The 
nuclei refer to the main ideas or goals.  The satellites provide various 
kinds of support for the nuclei, such as an example, an elaboration, 
a reason, and so on.  The top-most schema organises the text as a 
whole, with subschemata providing a hierarchical structure to the 
text.  The following relations (which are defined fairly precisely) are 
postulated to be sufficient to describe normal English text:
circumstance solutionhood elaboration  
background enablement motivation  
evidence justify volitional cause
non-volitional volitional non-volitional
   cause    result    result 
purpose  antithesis concession
condition otherwise interpretation 
evaluation restatement summary
sequence contrast joint

Moore and Pollack (1992) argue that RST does not distinguish 
sufficiently between what they call the informational level and the 
intentional level, that is, concerned with the subject matter and 
concerned with the intended effect upon the hearer, respectively.  
Although RST does have both informational and intentional discourse 
relations, it requires only a single element to hold between a pair of 
discourse elements.  Moore and Pollack argue that it is necessary to 
have both (or more) kinds of relation holding simultaneously.  

For example, in our beloved Socratic dialogues about rice-
growing, we might have a dialogue fragment: “(a) The Japanese 
grow rice.  (b) They love saké.”  If the student knows that saké 
is made from rice, then she may infer that (b) is an informational 
element intended to increase her belief in (a).  Or she may infer that 
saké is made from rice, assuming that (b) is intended to increase her 

9.1    Discourse structure    303   



belief in (a) and therefore there must be some relation between them.  
Thus, a satisfactory analysis requires a parallel consideration of both 
informational and intentional aspects. 

RST and similar theories can be used both to describe and to 
generate discourse.  Discourse generation is seen as a problem of 
generating (linguistic) actions to achieve some goal and therefore 
as a special case of planning.  It differs from general planning in 
that the acts are directed towards another agent, rather than for 
one’s own benefit.  This second agent is liable to interpret the acts 
in ways similar to oneself.  Therefore, language generation involves 
an interplay between two agents' related abilities to generate and 
analyse discourse and a consideration of how these abilities take 
account of the other agents’ beliefs, goals, and so on.  Moore (1995) 
provides a detailed account of the use of planning formalisms to 
generate discourse plans to support human-computer dialogues.

Hovy (1993) reviews attempts to use RST to generate discourse.  
Although a parsimonious set of relations may be adequate for 
descriptive purposes, discourse generation apparently needs a much 
larger set.  Hovy has accumulated relations proposed by other 
researchers and produced a taxonomy of some 120 relations.  With 
such relations it is possible to generate paragraphs such as

“When making a handoff, the transferring controller relays information   
to the receiving controller in the following order.  He gives the target’s 
position.  He gives the aircraft’s identification.  He gives the assigned 
altitude and appropriate restrictions.”

We are suitably impressed only after a detailed study of how ‘far 
back’ a system has started in generating such a paragraph.   We know 
that any particular output can be produced from canned schemata, 
and indeed, because of the difficulties of generating text of any 
length, most AI-ED system output is not generated in any profound 
sense.  Nonetheless, Hovy concludes that “it is not unreasonable to 
expect the flexible planning and generation of coherent, multi-page 
texts in limited domains within the next five years.”

304    Computational Mathetics



9.2 Speech acts

Communications between teachers and learners are ‘speech acts’ 
like any other communication.  In speech act analysis, a given 

speech act may be described in:
locutionary•  terms, that is, in terms of the physical acts of 
producing a sequence of linguistic signs;
illocutionary•  terms, that is, in terms of its content and intended 
effect;
perlocutionary•  terms, that is, in terms of its actual effect upon 
the hearer(s).

The last two need not coincide, of course.  If a doorstep stranger 
announces that “I am a Jehovah’s Witness” then the effect upon the 
listener may not be that which is intended.

Illocutionary acts may be organised into different types.  
For example, Searle (1976) proposes five types, based on verb 
meanings:

Representatives, where the speaker is committed, to some • 
degree, to a proposition (such as “I believe, confirm, report, ...”).
Directives, where the speaker tries to get the hearer to do • 
something (such as “I ask, challenge, insist, ...”).
Commissives, where the speaker is committed to a course of • 
action (such as “I promise, guarantee, ...”).
Expressives, where the speaker indicates an attitude to a state of • 
affairs (such as “I apologise, deplore, thank, ...”).
Declarations, where the speaker alters the situation by making • 
the utterance (such as “I resign, baptise, ...”).
Or we could classify according to the mode of communication 

(Davis, 1990) into:
Declarative acts, which convey information.• 
Interrogative acts, which ask for information.• 
Imperative acts, which make a request or issue a command.• 
Exclamatory acts, which express an emotion.• 
Performative acts, which bring about a condition• 

9.2    Speech acts    305   



Successful speech acts should satisfy their so-called ‘felicity 
conditions’.  Some such conditions are preconditions - for example, 
one cannot resign without being in a position to do so.  Some 
concern the manner in which the act is performed - for example, 
one cannot welcome with a surly demeanour.  Such conditions are 
met naturally in everyday dialogues, but not necessarily in teacher-
student dialogues.

Human teacher-student interactions are particularly rich in 
subtle speech acts.  A student needs to determine what is intended 
by a surface speech act such as “Do you know if they grow rice 
in Malaya?”.  A student who simply responded “Yes” would be 
considered to have missed the point of the question (or to be bored 
with the topic or the convoluted way it is being discussed).  This is 
not a real question in many ways - for a start, it may be presumed 
that the asker knows the answer to the embedded question.

For subjective reasons, many teacher comments are very indirect 
speech acts.  For example, what is a student to make of “That is 
an interesting answer”?  First, perhaps, that the answer is wrong.  
Maybe it’s an answer that the teacher cannot himself explain.  The 
precise interpretation depends on the context: if a polite computer 
tutor always used this phrase instead of “Wrong”, a student would 
soon regard them as identical.

Speech acts, like other acts, are presumably carried out for a 
purpose, that is, to help achieve goals.  Therefore they might 
be defined in ways similar to other acts, namely in terms of the 
preconditions which must hold before the act may be performed and 
the effects of the act.  The preconditions and effects will refer to the 
states of the agents involved in the communication.  For example, a 
convince-by-inform act might be defined by:
 convince-by-inform(a,b,p):  
  if B(a,p) and At(a,loc(b)) then B(b,p)

The idea of speech acts, particularly performatives, has been 
adopted in the definition of KQML, an agent communication 
language (Genesereth and Ketchpel, 1994) proposed as a standard 

306    Computational Mathetics



for ‘knowledge sharing’ between distributed information systems.  
About forty performatives are defined in terms of their components, 
enabling messages such as:
 (evaluate :content (val (torque motor1) 
  (sim-time 5)) :ontology motors
  :reply-with q1 :sender a :receiver b)
 (reply :content (scalar 12 kgf) :ontology motors
  :in-reply-to q1 :sender b :receiver a)

that is, agent a asks agent b to evaluate some value and b replies.

9.3 Dialogue game theory

Dialogue game theory is a formal device for generating well-
formed sequences of locutionary acts.  It is semi-empirical in 

that it is based partly on analyses of discourse and partly on abstract 
specifications of valid processes of reasoning, discussion and 
argumentation.  The theory has three components:

A set of ‘commitment stores’ describing what each participant 1. 
believes or is committed to at any given stage of the dialogue;
A definition of the set of locutionary events (moves in the 2. 
dialogue game), with a definition of the changes to the 
commitment stores when such an event occurs;
A set of constraints on the sequence of events, from which is 3. 
intended to emerge the coherent episodic structure of rational 
dialogue.
Pilkington, Hartley, Hintze and Moore (1992) use dialogue game 

theory to design an interface to support argumentation.  There are 
four components to the system:

The dialogue moves: for example, statement, question, • 
withdraw, challenge and resolve (the last being a request to 
resolve a logical inconsistency).  
A set of ‘commitment rules’ defining the moves’ effects upon • 
the players’ commitment stores, such as, after a challenge “why 
p?” if the next move is a statement “q” then both “p” and “if q 
then p” enter both players’ commitment stores.  

9.2    Speech acts    307   



A set of ‘game rules’ defining when the moves are allowed, for • 
example, after “why p?” your move must be a withdraw of p, a 
statement other than p, or a resolution demand.  
A definition of when a player wins, such as, when the opponent • 
cannot legally resolve an inconsistency in his commitment store.
Given these definitions, a computer system can referee a game 

(an argument) between two players.  In itself, this may be useful 
to help students develop argumentation skills, but it is natural to 
wonder if the system could take part as one of the players.  To do so, 
the system would need to have (access to) beliefs of its own to argue 
about and, unless the discussion made explicit every step of the 
argument, which would be rather tedious, it would need to be able to 
reason about the content of those beliefs.  It would also need to have 
strategies for playing the game.  For example, it might use heuristics 
such as “If you believe something not in the opponent’s commitment 
store which you intend to use to support your argument, then pose 
the statement as a question.”  We may also try to develop strategy 
rules which are not intended to help the system win the argument 
but to cause the opponent to come to hold particular beliefs - an 
educational objective, which we will reconsider in chapter 10.  (If 
we need to relate this to the earlier framework: the contents of the 
commitment store are beliefs, the game rules are reasoners, and the 
strategy rules are monitors.)

9.4 Rational dialogue

In an AI-ED context, dialogue game theory posits a central role for 
the student model (or commitment store, as it is termed there) and 

considers that student model updating occurs as an on-going part of 
the instructional dialogue, not as a result of some separate diagnostic 
process.  Dialogue game theory goes some way - maybe far enough to 
manage AI-ED interactions - towards showing how Gricean maxims 
of conversation (see below) “fall out from a general characterisation 
of the aims and means of linguistic exchanges together with obvious 

308    Computational Mathetics



assumptions of rationality of the participants” (Carlson, 1983).  We 
may also attempt to make these “obvious assumptions” explicit, to 
provide a deeper theory of communication. 

For example, Cohen and Levesque (1990b) present a four-stage 
derivation of the basis of a theory of communication.  First, they 
introduce a set of primitive modal operators intended to define the 
mental states of the participants.  These operators are expressed in 
a modal logic based on a possible world semantics of knowledge 
and a situation calculus model of action.  The four operators defined 
are:

Bel(x,p) - p follows from x’s beliefs (this is therefore an 
implicit belief);

Goal(x,p) - p follows from x’s goals;
Bmb(x,y,p) - p follows from x’s beliefs about what is 

mutually believed by x and y;
After(a,p) - p is true in all courses of events that obtain from 

act a’s happening.
These operators are defined through a set of propositions and lemmas, 
for example, that of ‘shared recognition’:
 Bmb(y,x,Goal(x,p)) and Bmb(y,x,Bel(x,Always(p→q))) 
  → Bmb(y,x,Goal(x,q))

Secondly, a theory of rational action is developed by means 
of a set of propositions defining the properties of ideally rational 
individual agents with persistent goals, for example, to specify that 
agents do not knowingly and deliberately make their persistent goals 
impossible for them to achieve.  Theorems may then be derived from 
such propositions, for example, 
 Persistent-goal(x,p) and Always(Competent(x,p)) → 
  Eventually(p or Bel(x,Always(x,not p)))

that is, if an agent has a persistent goal p that it is able to bring 
about then eventually p becomes true or it believes that nothing can 
be done to achieve it.  The general problem of planning (section 
6.4) is concerned with developing such a theory and we can adopt 
several constraints on rationality, for example, that an agent cannot 

9.4    Rational dialogue    309   



intend an action it believes it cannot perform, nor an action which it 
believes mutually excludes another action it intends.

In the third stage, a theory of rational interaction is expressed 
as a set of definitions and propositions intended to characterise 
interactions between agents.  At this level, we need to take account 
of an agent’s ability to form models of other agents’ beliefs, plans 
and goals.  For example, an agent x may be said to be sincere or 
expert with respect to y and a proposition p under the following 
conditions:
 Sincere(x,y,p) ≡  
  (Goal(x,Bel(y,p)) → Goal(x,Know(y,p)))
 Expert(x,y,p) ≡ (Bel(y,Bel(x,p)) → Bel(y,p))

Such definitions of cooperative agents provide formal descriptions 
of the kinds of behaviour summarised by conversational maxims, 
such as the well-known four maxims of Grice (1975):

Quality - say what you believe to be true.• 
Quantity - say no more and no less than is needed for the • 
purposes of the communication.
Relevance - say something related to the purposes of the • 
communication.
Manner - say things clearly.• 

Of course, such informal maxims provide only general guidelines 
which are often violated (particularly in teacher-student 
interactions).

Finally in Cohen and Levesque’s scheme, a theory of 
communication is presented as descriptions of communicative acts 
such as questioning and requesting derived from general principles 
of belief and goal adoption between agents.  These descriptions 
enable a distinction between, for example, real questions, rhetorical 
questions and teacher-student questions.  In principle, multi-act 
utterances and multi-utterance acts can be handled in the same 
scheme.  The structure of dialogue is defined in terms of various 
relations, be they called discourse relations, rhetorical relations, 
dialogue game moves, or whatever.

310    Computational Mathetics



The definition of the content of the various levels is complex, 
but the intention is that each level be independently motivated.  For 
example, the notion of a cooperative agent should be developed 
independent of that of communication, and that of rational action 
independent of interaction.  So, the derivation of communicative acts 
could be based ultimately upon the kinds of representation of agents’ 
cognitive structures that we have previously adopted.  Consequently, 
there is a debate about the need for explicit dialogue relations, as they 
may be regarded as arising from a more basic model.  The extent to 
which such a deep analysis is necessary to support adequate system-
student interactions in practice remains to be seen: at the moment, 
practical systems manage with explicit dialogue relations.

So far in this chapter, the descriptions of dialogue have derived 
from considerations of general human-human interactions.  We have 
not specifically considered teacher-student interactions, which are 
assumed to be just a special case of the general theories.  If we use 
the dialogue game terminology, we can see that certain ‘patterns of 
play’ are particularly common in educational interactions, and we 
will consider three of these in the following sections.  We may also 
anticipate that system-student interactions, especially with the new 
interfaces, may be rather different and we will discuss this briefly in 
the final section of this chapter.

9.5 Explanation

In an educational context, the ‘explanation’ is one of the most 
common dialogue structures, perhaps corresponding, in the 

simplest case, to a sequence of challenge-statement moves in 
dialogue game theory, as with a child who keeps asking “Why?”.  
Like a diagnosis, an explanation is both an object and a process for 
generating that object, and, as with diagnosis, the trend has been 
towards focussing on the process rather than the object.

The view, previously philosophically dominant, of explanation 
as an object leads naturally to attempts to classify explanations 

9.4    Rational dialogue    311   



into different types and to map different kinds of explanation onto 
different situations and types of student.  It is a view implicit in 
early work on expert systems and indeed in the use of the word 
in explanation-based learning, where an explanation is simply a 
proof of some proposition.  In most expert system shells, the system 
generates an ‘explanation’ by backtracking through its proof.  In this 
view, then, the production of an explanation is intimately tied to a 
domain model and the main technical problem concerns the selection 
and textualisation of parts of the proof.

The next step is to make the nature of an explanation explicit 
so that a system may dynamically generate an explanation structure 
instantiated to the specific context.  The Explainable Expert System 
(EES) uses RST-like structures to define about one hundred plans 
which can be combined to develop a structured explanation (Moore, 
1989).  For example, text plans such as:
 persuade-by-motivation(c,s,g): 
  if Goal(c,g) and Goal(s,g) and Step(act,g)
   and Motivation(act,g) 
  then Persuaded(s,Goal(s,do(s,act)))
 motivate-act-by-means(c,s,g):
  if Goal(c,g) and Goal(s,g) and Step(act,g) 
   and Inform(c,s,Goal(c,g)) and Means(g,act)
  then Motivation(act,g)

are used to generate text for a goal, by proving subgoals, some of 
which produce text as a side-effect:
 Persuaded(s,Goal(s,do(s,replace))) 
 >> Motivation(replace,enhance-readability)
  >> Inform(system,s,enhance-readability)
   >> "I'm trying to enhance the readability 
    of the program"
  and Means(replace,enhance-readability)
   >> "by applying transformations that 
    enhance reliability"
 ...

Tattersall (1992) describes the use of rhetorical predicates in 
PORSCHE, an intelligent help system intended to be independent of 
the application with which the student is being helped.  The predicates 

312    Computational Mathetics



are divided into content and organisational predicates (mirroring the 
above distinction between informational and intentional levels).  A 
student query, such as “What is delete?”, is answered by expanding 
the core set of rhetorical predicates (membership, attribution,  
constituency, replacement, and representative) and then 
using organisational predicates to structure the content:

“delete is a command which is used to erase messages.  It has 
the effect of setting the deleted and touched flags and updating 
the current message pointer.  delete is available in mail mode 
and takes a mail specification as argument.  Its syntax is delete 
<mail-specification>, for example, delete * or delete 
<message-list>.”

The system supports follow-on questions, which is an implicit 
recognition that it is difficult to generate explanations at the right 
level of detail for all students.

The generation of an adapted explanation presumes the system 
has a model of the student to which the explanation should be 
adapted.  With a good student model, an explanation may be tailored 
in various ways:

by using or avoiding particular technical terms (if, for example, • 
the student model indicates that she does not know what a 
‘touched flag’ is);
by omitting or including material (for example, by omitting • 
detail if the student model indicates it is already understood or 
would be too complex);
by using different presentation strategies.• 

However, this places currently unsatisfiable demands on the student 
modelling component, and as a result most explanation systems 
allow follow-on questions through which a student may clarify an 
initial, provisional explanation.  Moore and Paris (1992) discuss 
how a system can allow for inaccurate or incomplete student models 
by reacting to student feedback, in the form of follow-on questions 
or indications of a lack of understanding.  The system’s reaction 
should depend on previous interactions, including the explanations 

9.5    Explanation    313   



themselves, which must therefore be understood by the system.  Their 
extension of EES (discussed above) uses a student model containing 
elements of the form:

B(c,Goal(s,g)); the system believes the student has goal g.
B(c,B(s,p)); the system believes the student believes some 
proposition p.
B(c,B(s,Concept(x))); the system believes the student 
knows a description of some concept x.
B(c,Competent(s,Do(s,act))); the system believes the 
student can perform the action act.
B(c,Competent(s,Achieve(s,g))); the system believes the 
student is competent to achieve goal g.

and also stereotypes, such as
B(c,Novice(s))

If a student indicates a lack of understanding of an explanation 
generated as described above, then the system reflects on its plan 
for generating the explanation to see what may have gone wrong.  If 
the system finds an assumption that the student knows a concept, for 
example, B(c,B(s,Concept(generalized-variable))), then it 
may explain that concept, in case the assumption was unfounded.  If 
it can find no such assumption, then it may re-plan the explanation.  If 
there are no alternative plans, then it may present a menu of follow-
on questions, such as “What is a generalized variable?”.

Such a reactive explanation capability alleviates the burden on 
the student modelling component.  So, for practical reasons, we 
come to a view of explanation as not something presented by one 
agent to another, but as something jointly constructed between the 
two.  An explanation cannot be an object which can be analysed or 
generated independently of the agents involved.  There is, of course, 
an asymmetry in that the aim is that one agent should come to believe 
something previously believed by the other agent, but the beliefs, 
goals, context, and so on of both agents determine the quality of an 
explanation (consider what constitutes an explanation for Australian 
aboriginal children, section 1.1).

314    Computational Mathetics



Not only should explanations be interactive but they should 
be tightly coupled with the diagnostic process (Cawsey, 1993).  In 
general, the more interaction there is, the more evidence there is 
to base diagnosis on, and the better the diagnosis, the easier it is to 
produce a suitable explanation.  Therefore, diagnosis and explanation 
(and other forms of interaction) are mutually reinforcing processes.

The EDGE system (Cawsey, 1993) plans explanations of ‘how 
things work’ using about twenty content planning rules, such as
 plan how-it-works(device): 
  if K(s,Constituency(device))
  then Goal(Process(device)) and
   Goal(Behaviour(device))

that is, to explain how it works, if the student knows the structure of 
the device then describe the device’s processes and then its overall 
behaviour, and
 plan constituency(device): 
  if Device-analogy(device,x)and
   K(s,Constituency(device))
  then Goal(Compare-constituency(device,x)) 

that is, to explain the structure, if there is an analogous device which 
the student knows the structure of then compare the two structures.  

Planning an explanation is beginning to look like a special case 
of planning a curriculum (section 10.3).  The student model used in 
EDGE, as with most discourse planning systems, is rather simple, 
being just an overlay model, with no representation of misconceptions 
or alternative views.  The student is modelled as knowing, maybe 
knowing or not knowing each fact.  Direct inferences (from what the 
system or student says) about what the student knows are considered 
more reliable than indirect inferences (from the domain structure or 
from stereotype assumptions).  During an explanation, the system 
prefers not to try to make the approximate student model more 
precise but to ask explicit questions.  For example, if the student 
model indicates that the student maybe knows how an astable multi-
vibrator works then rather than assume that she does the system will, 
if it has that goal, ask the question “Do you know how an astable 

9.5    Explanation    315   



multi-vibrator works?”.  The design objective is that such questions 
be seen by the student as an intrinsic part of the explanatory process, 
not as an irrelevant question for the system’s benefit.  The answers 
to such questions may lead to changes in the student model and 
to changes in the planned explanation.  In principle, such changes 
could involve general model maintenance techniques (section 8.3), 
but EDGE actually uses a simple numerical scheme.

The overall conclusion from the work on explanation is that, 
when broadly construed, the process of giving or constructing an 
explanation is a central activity of AI-ED systems and therefore it is 
not surprising that many of the representations and techniques (for 
planning, diagnosis, dialogue, and so on) that we have discussed 
need to be integrated in any comprehensive approach.

9.6 Argumentation

In argumentational reasoning a proposition is believed if it cannot 
be defeated by attacking arguments.  This might be expressed as:
B(a,p):- not Defeated(p).  
Defeated(p):- Attacks(q,p), B(a,q).

This formulation refers only to uni-agent argumentation (that is, 
reasoning about one’s own beliefs by ‘arguing with oneself’), in 
which case argumentation is just a form of nonmonotonic reasoning 
as discussed earlier.  To correspond better to the everyday sense 
of ‘argument’ and to relate argumentation to dialogue, we need to 
imagine that the attacking arguments come from a second agent.  
The reformulation:

B(a,p):- not Defeated(p).  
Defeated(p):- Attacks(q,p), B(b,q).

does not, however, capture the to-and-fro, temporal nature of an 
argument, where b repeatedly puts forward propositions which it 
believes to attack the proposition believed by a (and vice versa).

Nonetheless, most studies of the structure and acceptability of 
arguments in philosophy, logic and AI have not worried overmuch 

316    Computational Mathetics



about the source of the propositions which constitute an argument.  
The general idea in argumentation is that a proposition will be or may 
be believed only if there is no evidence to the contrary, it being the 
role of the second agent to present that evidence.  As that evidence is 
also a proposition it too may form the basis for an argument, leading 
to nested argument structures.

Pollock (1992) relates a philosophical account of argumentation 
(or defeasible reasoning) to AI’s descriptions of nonmonotonic 
reasoning and reason maintenance.  Using our terminology, if an 
agent a has a belief-set BS(a) and a reasoner-set RS(a) then it has a 
reason for believing p if

r1(p1,p2,..,pn) >> p

where a reasoner r1 (a member of RS(a)) when applied to 
p1,p2,..,pn (all members of BS(a)) derives p.  A rebutting defeater 
for b is a reason for b believing not p:

r2(q1,q2,..,qn) >> not p

where q1,q2,..,qn are members of BS(b).  An undercutting 
defeater is a reason for believing that the original reason does not 
imply p:

r3(q1,q2,..,qn) >> not (r1(p1,p2,..,pn) >> p)

These two kinds of defeater are considered to be all there are.  
An argument is then considered to be a sequence of reasons.  An 

argument A2 is said to defeat an argument A1 if A2 contains a reason 
which rebuts or undercuts a reason contained in A1.  If an argument 
A1 for a conclusion p is defeated by an argument A2 which is in turn 
defeated by an argument A3, then p is said to be unwarranted at level 
1 and warranted at level 2 (and so on, perhaps).  The argument for p 
is ultimately undefeated if there is a level m such that for every level 
n>m, p is warranted.

However it remains to provide a satisfactory account of how 
the arguments at each alternate level may be provided by different 
agents, how the steps of the argument may be interleaved, and the 
effects that such arguments have on the beliefs of the participants 
involved.

9.6    Argumentation    317   



9.7 Negotiation

Explanations, arguments and negotiations overlap in various ways 
but we may distinguish them simply in the following way:

 B(a,p) and not B(b,p) + Explanation >>  B(b,p) 
 B(a,p) and B(b,not p) + Argument >>  
  (B(a,p) and B(b,p)) or 
  (B(a,not p) and B(b,not p))
 B(a,p) and B(b,q) + Negotiation >>  
  B(a,r) and B(b,r)

In a (successful) negotiation, two agents begin with different views 
and end with the same view (which may or may not be one of the 
original views).

In the less dogmatic styles of AI-ED system, the student may 
have greater scope for following her own goals and developing her 
own understanding.  In such a case, the system may offer (fallible) 
comment and advice in the role of a cooperative partner rather than a 
knowledgeable tutor and hence engage in some kind of ‘negotiation’ 
with the student (Moyse and Elsom-Cook, 1992).  Such a role may be 
achieved by a disingenuous concealment of its domain knowledge by 
the system but the role is likely to be more appropriate in situations 
where computational representations of domain knowledge are 
unattainable or controversial.  

If the system’s domain knowledge is not complete or necessarily 
correct, then the system may need reasoning and learning capabilities 
commensurate with those of the student.  With such capabilities, 
the system may maintain a student model, which together with 
the system’s model, represents some joint understanding of the 
domain.  Naturally, in such a context, the student model is less an 
internal component of the system but becomes an ‘external’ focus of 
discussion.

Concepts such as negotiation and cooperation have been much 
studied in distributed AI, where Durfee and Lesser (1989) consider 
that there is “confusion and misunderstanding among researchers 
who are studying different aspects of the same phenomenon.”  They 

318    Computational Mathetics



urge that we distinguish carefully between negotiations which are 
about the shared construction of meaning and those which are about 
task-sharing or planning.  Both are central to the philosophy of AI-ED 
systems, the former being concerned with the nature of knowledge 
and the latter with the issue of student control.

In most multi-agent problem-solving situations it is not acceptable 
for a single agent to take sole responsibility for decision-making.  
Often, it is necessary for the decision-making agent to persuade the 
other agents to agree to a decision, to enable them to revise their 
viewpoints so that they may continue to be able to offer contributions 
and, in the case of human agents, perhaps for subjective reasons, to 
encourage future cooperation.  

Teachers (and ITSs) possess a rich set of techniques for persuading 
students to adopt a desired viewpoint.  The simplest technique is to 
transmit the required viewpoint, that is, to tell it to the student, and 
to assume that it will overwrite the student’s.  The limitations of this 
technique hardly need elaborating at this point.  More subtle are 
the various ‘challenging’ techniques in which the student is led, by 
the use of counter-examples perhaps, to question the basis for her 
viewpoint and to revise it in a suitable direction.

In more egalitarian multi-agent systems, where there is no 
‘distinguished agent’ responsible for resolving conflicts and making 
decisions, it may be possible to apply the technique of mediation, 
in which an independent, external agent, with no vested interest in 
outcomes, is brought in specifically to find some compromise between 
viewpoints.  Hewitt (1986) proposes such a technique for dealing 
with conflicts between microtheories (that is, small, consistent sets 
of beliefs).  The outcomes from the microtheories are passed to 
metamicrotheories, which contain axioms about microtheories and  
engage in extra-deductive techniques such as debate and negotiation 
to deal with inconsistencies and conflicts between microtheories.  
The metamicrotheories may themselves be inconsistent with one 
another.  Unfortunately, the decision-making procedures of the 
metamicrotheories are not formally specified.

9.7    Negotiation    319   



If two or more agents have conflicting views which have to be 
reconciled then, with or without a mediator, some negotiation is 
necessary.  In distributed AI there are many references to techniques 
which are considered to involve negotiations among nodes of 
a system.  Indeed, the centrality of the idea of negotiation was 
emphasised by Davis and Smith (1983) in an attempt to establish 
it as a dominant metaphor for distributed problem-solving.  They 
place negotiation within the mainstream of AI control structure 
development as a natural extension from the one-way information 
exchanges of then current AI programming systems.  

Technically, their main contribution is the contract net, which 
provides opportunistic, adaptive task allocation among agents 
using a framework based on task announcements, bids and awarded 
‘contracts’.  An agent can adopt both ‘manager’ and ‘worker’ roles 
and a ‘contract net protocol’ enables the opportunistic communication 
between managers and workers.  As the contract net works through 
the mutual selection by both manager and worker processes, it 
differs from manager-centred invocations (such as procedure calls) 
and worker-centred invocations (such as data-driven computations).   
However, there is no mechanism for reasoning about the global effects 
of local decisions, nor any metalevel control, and consequently any 
global coherence emerges only incidentally.

Work on negotiation in distributed AI makes only token reference 
to studies of human-human negotiations, such as union-employer 
bargaining.  Even in work that sets out explicitly to model human-
human negotiations, such as that of Sycara (1989), which is concerned 
with adversarial conflicts in labour relations, it has been found (as 
usual) that sociological texts do not provide the required precision and 
it has been necessary to devise new computational representations.  
In Sycara’s system, called Persuader, negotiation is regarded 
as an iteration through three steps: generation of a compromise 
proposal by a mediator, generation of a counter-proposal based on 
feedback from a dissenting agent, and persuasive argumentation 
based largely on case-based reasoning.  Various argument types are 

320    Computational Mathetics



defined, based on appeals to universal principle, a theme, authority, 
‘status quo’, ‘minor standards’, ‘prevailing practice’, precedents as 
counterexamples, self-interest, self-protection, and so on - but this is 
clearly an area where further research is needed.

The different techniques developed in distributed AI address 
different aspects of negotiation.  For example, the contract net is 
concerned mainly with the allocation of tasks to agents, whereas 
Persuader emphasises the iterative exchange of counter-proposals 
leading to compromise.  In an attempt to impose some consensual 
basis, Durfee and Lesser (1989) propose a general definition 
of negotiation: “the process of improving agreement (reducing 
inconsistency and uncertainty) on common viewpoints or plans 
through the structured exchange of relevant information.”

This definition has the virtue of distinguishing two aspects 
which have become intertwined in distributed AI and are in danger 
of becoming so in AI-ED research, namely, the distinction between 
negotiations aiming for shared plans and those seeking common 
viewpoints.  Baker (1994) distinguishes the two in the following 
thesis for the importance of negotiation in AI-ED:
Because

tutors do not possess complete knowledge for the domains • 
which they teach;
and, for some domains, there is no single correct viewpoint on • 
knowledge;
and, for some domains, there is no knowledge but only a number • 
of competing sets of justifiable beliefs;
and, for some problems, there are multiple acceptable solutions• 

tutors 
should not aim to simply transmit their own knowledge (beliefs) • 
to the student;
and should not have complete control over the tutor-learner • 
interaction;
and should jointly construct with the learner representations of • 
the domain to be learned;

9.7    Negotiation    321   



and should use negotiation mechanisms to support tutor-learner • 
interactions.

The conditions are claims about the nature of knowledge and the 
conclusions are claims about tutor-learner interactions.

Baker (1994) presents a detailed analysis of some aspects 
of negotiation in tutor-learner dialogues.  It is assumed that in a 
negotiation there is a mutual goal of agreeing on some proposition 
which is subject to various constraints:

Mutual-goal(a,b,Agree(a,b,p)) 
and that both agents have equal rights to propose, accept or reject 
propositions.  Negotiation processes are considered to consist of 
strategies (or general methods of achieving the negotiation goal), 
arguments and actions (that is, communicative acts).  In the ‘refine’ 
strategy an agent seeks to modify an offer of the other agent.  An 
‘offer’ is a different kind of speech act to those considered earlier in 
that it is conditional rather than categorical, so that the appropriate 
epistemic attitude is one of acceptance rather than belief.  

The style of the analysis can be illustrated with this very simple 
dialogue:
 1. Why don’t we discuss fractions?
 2. OK, let’s.
 3. Fine.
It is assumed that for each communicative act there is a set of 
‘appropriateness conditions’ {c} such that, after x performs the act:
 K(x,(Mutually-believe(x,y,(Assumes(x,B(y,c)))))) 
 K(y,(B(y,c))
 K(y,(Mutually-believe(y,x,(Assumes(x,B(y,c))))))

For example, the appropriateness conditions for an offer from x to     
y might include:

B(x,(Accepts(y,p) → Accepts(x,p))

If p denotes the proposition that “a and b will discuss fractions”, 
then after speech act 1 we have (using obvious abbreviations):
 1.  K(a,(MB(a,b,(Ass(a,B(b,B(a,(Accepts(b,p) → 

Accepts(a,p))))))))

 2.  K(b,(B(b,B(a,(Accepts(b,p) → Accepts(a,p))))

322    Computational Mathetics



 3.  K(b,(MB(b,a,(Ass(a,B(b,B(a,(Accepts(b,p) →
Accepts(a,p))))))))

As a made the offer we might also posit: 
 4.  K(a,B(a,(Accepts(b,p) → Accepts(a,p)))
If the appropriateness condition for act 2 (and 3) is Accepts(x,p) 
then after act 2 we have
 5.  K(b,(MB(b,a,(Ass(b,B(a,Accepts(b,p)))))))
 6.  K(a,(B(a,Accepts(b,p)))
 7.  K(a,(MB(a,b,(Ass(b,B(a,Accepts(b,p)))))))
Using the normal modal logic axioms we can infer from 4 and 6 
that:
 8.  K(a,(B(a,Accepts(a,p)))
and similarly after speech act 3 that
 9.  K(b,(B(b,Accepts(a,p)))
 10. K(b,(B(b,Accepts(b,p)))
From 6, 8, 9 and 10 we might infer (by definition, though a fuller 
account would consider the mutually believed assumptions):
 11. Agree(a,b,p)

It would be a daunting prospect to attempt such an analysis with 
more lengthy dialogues, with all the subtle contextual effects and 
implicit speech acts of normal natural language dialogues.  As with 
other complex analyses, lemmas would be defined to enable macro-
inferences, for example,
 Offers(a,b,p) and Accepts(b,p) and Ratifies(a,p) → 
   Agrees(a,b,p)

The dialogue would be considered to consist of ‘stages’ linked by 
dialogue game rules, for example,
 If Stage(n,Offers(a,b,p1)) and 
  Stage(n+1,Offers(b,a,p2) and
  Mutually-believe(a,b,Incompatible(p1,p2))
 then, after stage n+1, 
  Mutually-believe(a,b,not Accepts(b,p1))
  and <standard effects of Offers>

Such analyses may or may not turn out to be possible to support the 
on-line management of negotiative dialogues but they may at least 

9.7    Negotiation    323   



clarify the possible roles of negotiation in teacher-learner or system-
learner dialogues and also the nature of negotiation, which is clearly 
a complex process involving the consideration of mutual goals and 
understanding and the influence of speech acts upon them.

9.8 Multimedia dialogues

All the theories of dialogue discussed above have been developed 
by considering natural language dialogues although it is clear 

that most dialogues in practice involve multiple modes (involving 
different sensory channels) and media (involving different 
technologies for communicating information).  With the advent of 
new multimedia, there is much optimism that some of the difficulties 
of natural language computer-human dialogue may be circumvented.  
In principle, the new media should allow communications of better 
quality (less ambiguity, fewer errors) and greater quantity (as more 
bits of information may be generated and transmitted per second).  

Unfortunately, the new media, such as graphical displays, 
interactive video, cd-rom, three-dimensional sound, datagloves, 
virtual reality, and so on, are proliferating faster than it is possible 
to determine guidelines for their effective use.  Even the most 
straightforward conventions (such as the greying out of unusable 
items in menus) turn out to be rather complicated when subjected to 
empirical study.

Currently, most multimedia presentations are pre-determined 
and therefore take no advantage of the computer's ability to adapt 
the presentation to suit the on-going interaction.  Pre-determined 
presentations require conventional skills such as film-making and 
are not of direct relevance to computational mathetics.  Roth and 
Hefley (1993) discuss why multimedia systems need to make use of 
AI techniques: to “automate the process of designing presentations 
and thereby communicate effectively” especially when designers 
“cannot anticipate all possible combinations of information that 
will be requested for display.”  In these terms, the rationale for 

324    Computational Mathetics



intelligent multimedia systems is the same as that for AI-ED systems 
in general.

Attempts to develop analyses of multimedia communication 
are built directly on the relatively solid ground of natural language 
theories.  Although there is some disagreement that natural language 
utterances are generated in a two-stage process of planning what one 
wants to say and then deciding on a form of words, this separation 
is adopted in most schemes for multimedia presentation.  As far as 
the planning stage is concerned, it is hoped that the mechanisms 
developed for planning natural language utterances will be directly 
usable.  For example,  we can anticipate that rhetorical speech acts 
such as compare or emphasize may be achieved by various visual 
acts, such as overlaying drawings or zooming in.

The outcome of the first stage is generally a tree-like representation 
of the structure of the imminent multimedia presentation.  The 
second stage, of generating multimedia output, requires descriptions 
of the various media so that particular outputs can be allocated to 
appropriate media.  It is, of course, the case that different types of 
information are best presented via different media and therefore a 
system will need to be able to reason about how to integrate the use 
of different media to form a coherent communication.  As Arens, 
Hovy and van Mulken (1993) discuss, multimedia presentation rules 
can be very specific:

Ships' locations are presented on maps.  
or more general:
 Data duples (e.g. ships' locations) are presented  
  on two-dimensional media (e.g. maps).

Ideally, such rules should be based upon a set of general features that 
play a role in multimedia presentation.  After reviewing many fields 
concerned with presentation design, Arens et al conclude that there 
are four classes of features:

characteristics of the information to be conveyed;• 
characteristics of the media at hand;• 
the presenter’s goals;• 

9.8    Multimedia dialogues    325   



the perceiver’s interests and abilities.• 
A ‘media allocation rule’ refers to such features to determine 
appropriate media, for example,
 If relation = elaboration or relation = contrast
   and type(contents(leaf1) = type(contents(leaf2))
   and medium(leaf1) = medium(leaf2)
 Then create presentation-node with 
  contents(leaf1,leaf2) and medium(leaf1)

that is, merge elaboration or contrast relations of the same type into 
one presentation.  The media allocation rules traverse the discourse 
structure tree bottom-up to generate the entire presentation.  The 
system described (WIP) is said to have only twelve media allocation 
rules and the examples given do not seem to make much use of some 
of the features mentioned above.

Three of the four classes of feature (that is, all but the 
characteristics of the media) are the same as for natural language 
dialogue and we can anticipate that when attention is focussed on 
those features the same concerns as raised earlier in this chapter 
will re-emerge.  For example, multimedia explanations should take 
account of the prior discourse and the student’s knowledge and goals, 
by, for example, omitting or emphasising aspects of the explanation.  
Multimedia explanations do, however, raise issues which do not need 
to be considered with purely linguistic explanations, such as, the 
integration of components of the explanation presented via different 
media and the effective use of temporal aspects, as it is possible to 
coordinate or overlap different components and to use unreal timing 
effects.

As with linguistic explanations, we can expect an increased 
recognition that multimedia explanations are not objects to be created 
by the system and simply presented to the student.  A successful 
explanation is likely to be interactive and coupled with on-going 
diagnostic processes.  For example, PPP (André et al, 1993), an 
extension of WIP, mentioned above, allows the user to ask follow-
on questions about the domain and the presentation and monitors the 
effectiveness of a presentation so that instructional strategies may 

326    Computational Mathetics



be continuously adapted.  However, such a point of view presents 
particular problems for multimedia explanations, because there is 
an inevitable asymmetry in the participants’ contributions.  Whereas 
students can be encouraged to provide an ‘equal’ linguistic input, 
it is not possible for students to create and input drawings and 
films on-line.  Of course, certain kinds of non-linguistic input are 
possible, for example, pointing and rough sketches, but the effective 
incorporation of these in truly interactive multimedia interactions 
has yet to be developed.

The quality and effectiveness of students’ interactions with 
computer-based learning systems has been improved by the 
new media and there appears to be great potential for further 
developments.  These improvements have not been underpinned by 
the kinds of theoretical analysis which computational mathetics aims 
to provide for AI-ED systems.  However, the new media have led to 
something of a reversion to previously discredited display modes of 
instruction.  As the limitations of such methods are (re)discovered 
and there is more emphasis on the need for meaningful interactions, 
taking fuller account of the beliefs and goals of all participants, so 
we may anticipate an increased need for analyses in the style of 
computational mathetics.

9.8    Multimedia dialogues    327   



10

Instruction

The first sentence of the classic text on instructional design by 
Gagné, Briggs and Wager (1992) defines instruction to be “a 

human undertaking whose purpose is to help people learn.”  Even 
with the limitation to humanity, this is a broad definition which 
surely avoids the negative connotations attributed to the activity of 
instruction, for example, in slogans such as “instructivism versus 
constructivism.”

Gagné et al stress that the term ‘instruction’ is not meant to imply 
a particularly limited kind of undertaking, such as teaching in a 
classroom in a didactic manner.  For them, teaching is only one form 
of instruction.  Instruction also includes the activity of structuring an 
environment (a book, a video, a computer simulation, and so on) and 
also activities internal to the learner (which they consider to be ‘self-
instruction’).  Therefore, instruction, despite the term’s pejorative 
overtones, must be considered within the scope of computational 
mathetics.

However, as we will see, there is not a lot left to say about 
instruction.  One of the aims of computational mathetics is that 
instruction become a deductive consequence of formalisations of its 
constituent processes such as diagnosis, dialogue, interaction, and 
learning.  Of course, we are far from being able to carry out this 
deduction fully analytically but we can at least sketch the objectives 
and put them within the context of the current status of instructional 
systems design.

To establish a foundation, here are a set of instructional design 
principles for optimal learning presented by Spector (1993) - 
originally written by Gagné - which are intended to crystallise 

328    Computational Mathetics



the common conclusions of established theories of instruction 
(such as the Gagné-Briggs theory, algo-heuristic theory, structural 
learning theory, component display theory, elaboration theory, and 
motivational theory):

Different learning objectives require different instructional 1. 
strategies.
There are five different types of learning objective, each with a 2. 
distinctive instructional strategy: 

verbal knowledge - relate to known knowledge, use spaced 
review; 

concepts - provide definition, examples and non-examples; 
procedural rules - assure component skills are mastered 

before the total skill is tried; 
motor skills - practice with reinforcement; 
attitudes - demonstrate using human models.

Begin with an event that arouses and sustains learner interest.3. 
Communicate clearly what the learner must learn to do.4. 
Stimulate recollection of previously learned relevant 5. 
knowledge.
Make the stimulus aspect of the task readily perceptible.6. 
State rule-then-example or example-then-rule before learner 7. 
performance.
Guide the learner through elaborations.8. 
Verify initial learning by learner performance.9. 
Provide varied practice with corrective feedback.10. 
Communicate the relation between what is being learned and 11. 
how it will be used.
Arrange occasions that require retrieval.12. 
We may echo some of the comments made in section 3.5 with 

respect to principles proposed for AI-ED systems design.  The 
principles listed above are not all of the same kind - some are statements 
of methodological preference (for example, the opinion that there 
are five types of learning objective) and some are prescriptions.  The 
principles are quite vaguely stated, even allowing for the fact that 

10    Instruction    329   



they may have been watered down to make them acceptable to all 
instructional theorists.  It is not clear how the principles interact.  
For example, when should one ‘guide through elaborations’ or 
‘provide varied practice’?  The derivation of the principles from the 
instructional theories is only loosely argued.

However, criticism is not our purpose.  The above list is intended 
to be illustrative of the results and methodologies of instructional 
theorists, who have made a concerted effort for some decades to 
establish useful instructional principles.  It enables us to put the aims 
of computational mathetics in a realistic context.

10.1 Theories of instruction

Bruner (1966) attempted to establish the nature of a theory of 
instruction by contrasting it with a theory of learning.  The 

latter was considered to be descriptive (concerned with describing 
learning events that are observed); the former was considered to be 
prescriptive (concerned with prescribing activities more likely to 
cause learning to occur).  However, a theory of instruction is clearly 
derivative of a theory of learning, as it should not prescribe activities 
which a theory of learning indicates would be unproductive.  

Reigeluth (1993) comments that “learning theory can provide 
a basis for the (deductive) development of instructional theory, but 
instructional theory can just as readily be developed (inductively) 
through trial and error.”  At the moment, trial and error development is 
often necessary because learning theories are too vague or incomplete 
to permit many instructional design decisions to be made.  In this 
section, however, we will be concerned with the possible deductive 
development of instructional theory, because, this, if it is successful, 
would provide analytical reasons for instructional prescriptions.

In some cases, a theory of learning seems so straightforward that 
instructional prescriptions seem to follow directly.  For example, the 
concepts of behaviourism led directly to the design of programmed 
learning texts.  For more complex theories, the instructional 

330    Computational Mathetics



implications are not so easy to determine.  For example, if we consider 
the two main candidates for a unified theory of cognition, ACT* 
and SOAR, it is not obvious that the twelve principles listed above 
follow from them.  The theories are not comprehensive (for example, 
metacognitive mechanisms are not explained in  detail) so that it is 
necessary to engage in some liberal interpretation or extrapolation 
of the theories.  It is probably the case that all the principles could 
be argued to follow to some extent but that cognitive theorists would 
prefer to re-express the principles in ways more compatible with their 
own theoretical constructs.  For example, if we compare Anderson’s 
eight principles (section 3.5) we can see some superficial similarity 
but many differences of expression and emphasis.

At the moment, proponents of a particular theory of learning 
will work out its instructional implications and contrast them with 
those said to follow from other theories.  It is quite difficult for a 
proponent of one particular theory to determine if a set of instructional 
principles does, in fact, follow from a different theory.  It is also hard 
to show that a particular principle attributed to a theory does not 
follow from it.  Therefore, it is relatively easy to build arguments 
by denigrating principles alleged to follow or not follow from other 
theories.  For example, Sack, Soloway and Weingrad (1994) quote 
Hirsch (1988):

“Good reading, like good chess, requires the rapid deployment of 
schemata that have already been acquired and do not have to be 
worked out on the spot.  Good readers, like good chess players, 
quickly recognize typical patterns...”

and then proceed to refer to 
“the transmission paradigm implicit in Hirsch’s proposal.”  

It is not clear that any such paradigm is implicit in Hirsch’s 
comments.  Many studies have shown that good chess players can 
indeed recognize typical patterns.  One may dispute, as situationists 
do, that such recognition depends on the use of internal schemata, 
but even if one believes in their existence it does not follow at all 
that one is advocating teaching chess learners by ‘transmitting’ such 

10.1    Theories of instruction    331   



schemata to them.  If I believed that it were an objective fact that, in 
general, it is bad idea to have two pawns in the same column then 
it would not follow that I believed that I should try to transmit (that 
is, tell, presumably) this fact to a chess learner.  Our hope is that 
the approach of computational mathetics will eventually lead to a 
tightening up of such argumentation.

If one has a theory of learning, then instructional prescriptions 
must be consistent with it but they cannot be derived from it alone.  
The derivation of specific instructional prescriptions or general 
instructional principles requires the specification of the following 
five components:

A theory of learning, as discussed above.1. 
A theory of knowledge, if the learning theory refers to 2. 
relationships between knowledge items.
The set of possible instructional actions (in terms of the possible 3. 
interactions with the learner and the conventions of educational 
practice).
The relevant characteristics of the learner or learners (in terms of 4. 
prior knowledge and individual differences).
The instructional goals (in terms perhaps of the knowledge to be 5. 
acquired, usually taking account of the resources available).
We may consider these components in turn, with a simple 

illustration.  A theory of learning is a set of statements describing 
how the cognitive state of a learner changes as a consequence of 
instructional actions (bearing in mind that we have a broad notion 
of what may constitute an instructional action).  In general, then, it 
might be defined by a set of axioms of the form:

State(s,s1,t) and I-Action(ia,x) → 
State(s,s2,ia(x,t))

that is, if s is in state s1 in situation t and ia is an instructional 
action with parameters x then she will be in state s2 in the situation 
reached by applying ia, that is, ia(x,t).  We do not, at this stage, 
need to define what is meant by a ‘cognitive state’ but may assume 
that it is represented by ascriptions of the form we have described.

332    Computational Mathetics



For example, an impasse-based theory of learning from examples 
might have the following axioms (simplifying, of course):
1. State(s,[],t) and  
  I-Action(present-positive,[p,f,a]) → 
  State(s,B(s,f → a),
   present-positive([p,f,a],t))

that is, if the student knows nothing then if we present a positive 
example p which has feature f and where action a was used to solve 
the problem, then the student will believe that any problem with 
feature f must be tackled by applying action a.
2. State(s,[],t) and  
  I-Action(present-positive,[p,[f,g],a]) → 
  State(s,B(s,f and g → a),
   present-positive([p,[f,g],a],t))

that is, similarly, if the positive example has two features f and g 
then the student will believe that action a is appropriate for problems 
with both features.
3. State(s,s1,t) and I-Action(question,[q,fs]) and
  Impasse(s1,q,fs) → 
  State(s,generalisation(s1),question([q,fs],t))

that is, if the student is presented a question q with features fs which 
leads to an impasse then she generalises her cognitive state.
4. State(s,s1,t) and I-Action(question,[q,fs]) and
  Solves(s1,q,fs) → 
  State(s,s1,question([q,fs],t))

that is, if the question is solved the student’s state is unchanged.
We now need definitions of the predicates Impasse and Solves 

and the function generalisation, which might include, for 
example, the axioms:
5. Impasse(B(s,f and g → a),q,f)   
that is, if the student believes the rule f and g → a but the question 
has only feature f then she reaches an impasse.
6. generalisation(B(s,f and g → a)) = 
  B(s,f → a) or B(s,g → a)

that is, by generalising, the student will believe that one or other 
feature alone is sufficient for the action.

10.1    Theories of instruction    333   



7. Solves(B(s,f → a),q,f)    
that is, if the student believes f → a and the question has only that 
feature then she will solve the problem.  A set of such axioms and 
definitions constitutes, in our terms, a theory of learning.

A theory of knowledge would define all the relationships between 
knowledge items to which a theory of learning refers.  For example, 
if a theory of learning has an axiom to say that an analogous, more 
simple concept should be introduced before the more complex 
concept, then a theory of knowledge would need to define what is 
meant by ‘analogous’.  In general, of course, this would involve 
formalisations used in AI knowledge representation, but for this 
illustration this component is not needed. 

The third component involves the definition of the set of 
available instructional actions.  A theory of learning defines the 
effects of general instructional actions but does not say which 
actions are actually available.  Let us imagine that we have two 
example problem solutions p1 and p2, the first with feature f1 and 
the second with features f1 and f2, where action a1 was applied.  
(To be specific, p1 could be 745-127 with f1=borrow-next-left, 
p2 could be 85-27 with f1=borrow-next-left and f2=borrow-
leftmost, and a1=borrow).  If we assume that versions of the two 
problems could be presented as questions, we have four possible 
instructional actions:
8. I-Action(present-positive,[p1,f1,a1])    
9. I-Action(present-positive,[p2,[f1,f2],a1])    
10. I-Action(question,[q1,f1])      
11. I-Action(question,[q2,[f1,f2]])    

Next is a description of the individual learner.  In this case, we 
will assume no prior knowledge:
12. State(s,[],t0)    
and no individual differences to affect the learning theory posited 
above.

Finally, we must define the instructional goal or goals.  In 
general, this could be expressed in terms of the desired contents 
of any component of our framework (beliefs, goals, attitudes, 

334    Computational Mathetics



reasoners, monitors, and so on) or in terms of the properties of such 
components (for example, that they be comprehensive or consistent) 
without regard to any comparison to any desired content.  Normally, 
the goal would also require that this state be reached in some optimal 
manner.  Or we might require that some minimum distance from 
the goal be reached.  In our case, let us imagine that we would like 
the student to believe the rule f1 → a1 after only two instructional 
actions ia1 and ia2, that is, we wish to determine an ia1 and ia2 
with terms x1 and x2 respectively such that:
 State(s,B(f1 → a1),ia2(x2,ia1(x1,t0)))    

In general, the number of instructional actions will not be 
specified, but the goal may be to minimise the number of them, or 
perhaps to minimise the ‘cost’ associated with those actions, for 
example, the total time required.  As in AI in general, the difficulty 
of determining optimum multi-step solutions means that often the 
goal is expressed in terms of determining one step at a time, each 
step minimising the distance from some target.  Usually, this will 
not lead to globally optimum solutions (and sometimes will lead to 
no solution at all, even though one may exist).  This is considered 
further below.

Once the five components are defined, we may attempt to prove 
that the goal may be reached, such a proof yielding the requisite 
instructional actions.  From the twelve premises above, we may 
derive an instance of the goal:
 State(s,B(f1 → a1),question([q1,f1], 
  present-positive([p1,f1,a1],t0)))    

that is, if we present the example p1 followed by question q1 then the 
student will believe f → a.  This, then, is the derived instructional 
prescription, since, as it happens, the only other conclusions from 
two-action sequences, according to the above premises, are:
 State(s,B(f1 and f2 → a1),question([q1,[f1,f2]], 
  present-positive([p2,[f1,f2],a1],t0)))    
 State(s,B(f1 → a1) or B(f2 → a1),
  question([q1,f1], 
  present-positive([p2,[f1,f2],a1],t0)))    

10.1    Theories of instruction    335   



Neither of these satisfy the specified goal.  They indicate that the 
student may have an over-special rule (if we present p2 and then ask 
q2) or may have generalised as required or not (if we present p2 and 
ask q1).

This formulation re-expresses the argument described in section 
7.6 for presenting three-column subtraction before two-column 
subtraction.  The proof is general (in the sense that it could be applied 
to any similar problem-solving situation) and the conclusion could 
be presented as an ‘instructional guideline’.  In other words, not only 
may we try to derive specific instructional actions but we may try 
to prove general instructional theorems.  The derivation of such a 
proof is a general theorem-proving process and could, in principle, 
be carried out by automatic means.  

The general aim, then, is to express the theory of learning, theory of 
knowledge, instructional actions, learner attributes and instructional 
goals formally so that an instructional theory may be presented as 
a set of conclusions derived rigorously from assumptions, not as a 
set of vaguely expressed guidelines.  The premises of the learning 
theory must, of course, be independently verified (if possible) by 
psychological experimentation.

The above illustration is much too simple to convince anyone 
that the methodology is feasible.  Premises to describe the effect of 
some instructional actions are missing (because they are irrelevant 
to the above derivation); the description of the learner and goals are 
too simple; we should represent some kind of probabilistic analysis, 
as the effects of instructional actions are not so deterministic; 
ideally, we should include considerations of many of the other 
aspects considered previously, for example, the use of monitors and 
reasoners (implicit above) during problem-solving, the effect of 
limited reasoning abilities, non-monotonicity, and so on.

However, simplified though it is, the specific conclusion drawn 
is one which is counter to established educational practice and the 
argument was originally presented as justification for developing a 
detailed learning theory to be implemented as a computer program 

336    Computational Mathetics



so that its properties may be studied.  When the premises become 
more realistically complex, derivations will require computational 
assistance and thus there is no fundamental difference between an 
axiomatic analysis such as the above and a computational simulation.  
The issue is which mode of description is most clear, concise, precise, 
convincing, and ultimately successful in leading to the specification 
of the instructional component of AI-ED systems design.

10.2 Instructional systems design

When educationalists talk of ‘automating instruction’ (few of 
them do, of course) they generally mean the designing of a 

structured environment to support learning by following a systematic 
development process, this process to be carried out by humans and 
to lead to a product delivered to students.  The instructional systems 
design (ISD) process is typically considered to have five phases - 
analysis, design, development, implementation and maintenance 
- which is reminiscent of standard software engineering aiming to 
deliver products to clients (which includes those who commission 
the product and those who use it).  Such an approach is now 
somewhat outmoded, as it does not take adequate account of the 
clients’ involvement in the process and, as a result, does not enable 
adequate adaptation of the delivered product.  Nonetheless, a brief 
review of ISD may help put our aims in perspective.

ISD has always been based on contemporary theories of the 
learning process, or rather has lagged behind them.  The influence 
of cognitive psychology has almost obscured ISD’s roots in 
behaviourism but the more recent social and situational views of 
learning have yet to change ISD.  Traditional instructional design 
sees the learner as essentially inactive, receiving instruction. 

ISD considers in detail four of the five components mentioned 
in the previous section - learning theories, knowledge theories 
(in the form of curricula), instructional goals (or objectives), and 
instructional actions.  It rather ignores the fifth - the individual learner 

10.1    Theories of instruction    337   



- for the reasons mentioned above.  ISD does not say anything new 
about learning theories as such but aims to extract their implications 
for instruction.  There is great scope for such discussion because the 
theories are so varied and their implications so imprecise.  Gagné, 
Briggs and Wager (1992) attempt to provide a brief discussion of the 
relation between the basic processes of learning and instruction.

Assuming that the derivation of instructional implications is 
sound (which is debatable), the validity of ISD is dependent upon 
that of the psychological theory of learning on which it is based.  If 
ISD is based upon a theory which posits the existence of memory 
schemata for motivation, say, then if that premise is shown to be 
invalid then the ISD process falls.  

In computational mathetics, the ascriptions we make to learners 
are not justified by psychology but by their utility to us as observers 
and designers.  Confusion arises because it is assumed that, because 
we and learners are similar, any representation that we find useful 
will also be found useful by a learner, and therefore the learner must 
possess it as well, in some sense.  

In other contexts, such an assumption does not arise.  If we 
observe the motion of planets, then we may ascribe a formula to 
explain and predict that motion but we would not assume that the 
planet ‘possessed’ or had an ‘internal representation’ of that formula.  
If we wished to affect the behaviour of the planets (somehow), such 
ascriptions might be adequate.  The way of deriving a theory of 
instruction (using the methods of computational mathetics) does not 
depend on psychological soundness.  The results of such a derivation 
depend on psychological soundness only because the premises (of 
learning and other processes) do.

ISD has invested most effort on considering the nature of 
objectives, on the grounds that the best way to design instruction is to 
work back from the intended outcomes.  This implies a commitment 
to a view that objectives can be divorced from the means of achieving 
them and that general principles (that is, principles that are not 
domain-based) can be applied to relate means to objectives.  ISD 

338    Computational Mathetics



aims to describe objectives so precisely that an independent person 
can tell whether they have been accomplished by observing what the 
learner does.  

As objectives usually cannot be achieved in one step, it is 
necessary to specify intermediate objectives, leading to a focus on task 
analysis, which aims to identify which objectives are prerequisite to 
others.  The standard representation is a ‘learning hierarchy’, which 
is a directed acyclic graph in which if node i points to node j then 
whatever i represents is prerequisite to whatever j represents.  The 
definition of a prerequisite is part of a theory of knowledge.  The 
role of a prerequisite is expressible as an axiom of a learning theory, 
perhaps:
 State(s,K(s,i),t) and Prerequisite(i,j) and 
  I-Action(ia,x) →
   State(s,K(s,j),ia(x,t))

or maybe, as there is no presumption that one action will be 
sufficient:
 State(s,K(s,i),t) and Prerequisite(i,j) and 
  I-Actions(ias,x) →
   State(s,K(s,j),ias(x,t))

where this axiom is a shorthand for a series similar to the one above.  
Maybe a prerequisite is not a definition of what may be learned but 
what may not be - if i is not known then j will never be:
 State(s,not K(s,i),t) and Prerequisite(i,j) and 
  After(t2,t1) →
   not State(s,K(s,j),t2)

A prerequisite may be in terms of any component of our 
framework, not just knowledge.  For example, we might require the 
student to be ‘aware’ or paying attention in order to learn anything:
 State(s,not Aware(s),t1) and 
  Prerequisite(Aware(s),j) and 
  After(t2,t1) →
   not State(s,K(s,j),t2)

Presumably some such axiom justifies the third instructional principle 
(“Begin with an event that arouses and sustains learner interest”) in 
the list at the beginning of this chapter.

10.2    Instructional systems design    339   



ISD’s analysis of instructional actions considers the kinds of 
events and how they relate to the various media.  Gagné, Briggs 
and Wager (1992, p203) consider that “the information-processing 
(or cognitive) model of learning and memory” implies that there are 
nine kinds of instructional event:

gaining attention1. 
informing the learner of the objective2. 
stimulating recall of prerequisite learning3. 
presenting the stimulus material4. 
providing learning guidance5. 
eliciting the performance6. 
providing feedback about performance correctness7. 
assessing the performance8. 
enhancing retention and transfer9. 

Unsurprisingly, these events map almost one-to-one onto the afore-
mentioned list of instructional design principles, if we ignore the 
methodological preferences.  So, the cognitive theory implies certain 
kinds of event and instructional theory just says that these events 
should be performed well.

Just as there are many varieties of learning theory, we can 
anticipate that there will be different forms of instructional theory.  
Halff (1993) distinguishes the forms of instruction according to the 
degree of interactivity:

non-interactive instruction, such as uninterruptable lectures.• 
self-paced instruction, such as reading a book.• 
instruction with local feedback, where the situation provides • 
feedback, such as practising skills like swimming.
instruction with context-free interactive control, for example, • 
branching in standard computer-based training.
instruction with context-sensitive interactivity, e.g. simulations.• 
conversational instruction with some form of planning of the • 
instructional context, for example, tutorial discussions.
ISD has been mainly concerned with instruction at the top end 

of this list: AI-ED systems are towards the bottom of the list.  ISD 

340    Computational Mathetics



has concentrated on presentation methods: AI-ED complements 
this with more consideration of interaction, dialogue and diagnosis.  
These differences help explain some of the limitations of ISD for 
AI-ED purposes:

ISD is more suitable for organising courses and curricula than for • 
managing moment-to-moment interactions with an AI-ED system 
(or between human teachers and learners, for that matter).
Task analysis emphasises the static compartmentalisation and • 
fractionation of knowledge, whereas current conceptions see 
knowledge as dynamic, integrated and holistic.
There is no direct link between the phases of the ISD process, • 
so that, for example, task analysis yields only guidelines and not 
precise prescriptions.
Because there is no formal derivation of instructional designs, • 
there is no immediate way in which new understanding of learning 
can influence ISD.  Therefore, ISD will lag behind theoretical 
conceptions and will play little role in their development.
ISD is expensive, even with its limitations, and of little • 
demonstrated effectiveness.

As a result, it seems reasonable to seek alternative methodologies.

10.3 Instructional planning

ISD provides a form of instructional planning but one not precise 
enough for computer implementation.  In this section we will 

consider the prospects for on-line planning in AI-ED systems.  As 
the planning of a detailed course on complex topics is obviously a 
major exercise, we can anticipate (as for general planning in AI) the 
need for plan decomposition, leading to the idea of curricula and 
lessons, and the use of interaction and opportunism to modify on-
going plan execution.

Many AI-ED systems have no need to form instructional plans 
at all.  For example, simple simulations and learning environments 
need only to react to student inputs.  Coaches and problem-solving 

10.2    Instructional systems design    341   



monitors which are intended to respond to students’ solutions may 
need to plan their response, for example, to present an explanation 
or example, but they may not engage in any extended dialogue with 
a student and they have no need to plan the content and delivery of 
instruction.  If the student is expected to do more than solve problems, 
for example, to discuss with the system possible misconceptions, 
then dialogue management becomes necessary.  This involves all the 
issues of dialogue and diagnosis discussed in earlier chapters and is 
where the bulk of AI-ED research has focussed.

Often dialogue is managed through a set of rules which can be 
thought of as pre-specified plan components to be assembled by the 
system.  For example, GUIDON (Clancey, 1987) used twenty-six 
‘discourse procedures’ defined in terms of some 200 teaching rules 
(‘t-rules’), the sequencing of the procedures being controlled by a 
‘dialogue transition network’.  For example, the discourse procedure 
for changing the current goal after a student request to do so is:
1. T-RULE 22.01 
 If  Discussion of the new topic is complete
 Then Say: donetopic
   Discuss the final value of the new topic   
    and wrap up the discussion before
    returning to previous topics (Proc006)
   Say that the dialogue is returning to   
    discussion of the goal currently   
    being discussed
   Exit this procedure
2. T-RULE 22.02
 If  The new topic is not a subgoal of (or   
    the same as) the goal currently being   
    discussed
 Then Say: will-proceed
3. Discuss the goal with the student in a 
  goal-directed mode (Proc001)
4. Say that the dialogue is returning to discussion
  of the goal currently being discussed.

The set of discourse procedures and t-rules is intended to be 
domain-independent and provides a very elaborate structure for 

342    Computational Mathetics



dialogue control.  The content of the procedures and rules was 
presumably developed after detailed study of tutor-student and 
GUIDON-student interactions.  The content is said to be guided 
by the following set of principles, although there is, of course, no 
formal derivation and the principles themselves are only implicitly 
distributed over the discourse procedures and t-rules:

Be perspicuous.• 
Provide orientation to new tasks by top-down refinement.• 
Strictly guide the dialogue.• 
Account for behaviour in terms of missing expertise.• 
Probe the student’s understanding when you are not sure what he • 
knows.
Provide assistance by methodically introducing small steps.• 
Examine the student’s understanding and introduce new • 
information.
Similarly, the MENO-TUTOR (Woolf, 1988) uses a ‘discourse 

management network’ of forty nodes organised as a tree of three levels 
- pedagogic states, strategic states and tactical states.  Transitions 
through the tree can be pre-empted by ‘meta-rules’ which enable 
opportunistic transitions between any pair of nodes.  For example, 
a meta-rule to ‘move the tutor to begin a series of shallow questions 
about a variety of topics’ is:
 If the present topic is complete and the tutor 
  has little confidence in its assessment 
  of the student's knowledge
 Then generate an expository shift from 
  detailed examination of a single topic 
  to a shallow examination of a variety of 
  topics on the threshold of the 
  student's knowledge.

In the terms of section 6.4, such an approach provides reactive 
planning, in that apparently planned behaviour is an emergent 
phenomenon arising from using compiled responses to the evolving 
situation.  There is no deliberative planning in which explicit 
reasoning is carried out to determine actions to reach some goal 

10.3    Instructional planning    343   



state.  Peachey and McCalla (1986) were the first to express the 
instructional planning task in standard AI planning terms.  The goal 
is considered to be to reach some specified student description, using 
teaching operations defined in terms of preconditions and effects, 
selecting appropriate operators by a means-end strategy.

Unfortunately, the multitude of different kinds of knowledge 
which needs to be brought to bear leads to the adoption of powerful 
but undisciplined mechanisms such as blackboard systems and a 
plethora of semi-technical terminology which it is hard to translate 
from one system to another.  In a blackboard system, knowledge 
is expressed as a set of independent modules any one of which 
may contribute at any time to a problem solution, and any conflict 
between modules may be resolved by a meta-level, also organised as 
a blackboard (and so on).  The precise properties of such democratic 
disorder are hard to determine but blackboards do, at least, provide 
a framework within which designers may try to incorporate relevant 
knowledge.

The system described by Murray (1990) uses thirteen blackboards, 
the four most relevant to planning being concerned with:

The instructional plan - to deal with the tutor’s goals, intended • 
activities and intended procedures.
Planner control - to monitor plan execution, diagnose plan • 
problems, and edit plans.
Knowledge sources - to define, for example, the plan executor, • 
plan refinement operators, and the plan repairer.
History - to record executed activities, student questions and • 
requests, and assessments.

There are 43 knowledge sources (that is, independent modules 
which access the blackboards) to generate, monitor, diagnose and 
edit plans.  

Fernández-Castro, Verdejo and Díaz-Ilarraza (1993) use two 
blackboards, for the control and the domain.  They describe their 
implementation by presenting a ‘conceptual schemata network’ 
which has 42 nodes, with labels such as ‘pedagogic-decision’, 

344    Computational Mathetics



‘current-focus’, ‘control-ks’, and so on.  There is no formal way 
to compare such system designs.  It is difficult to determine the 
behaviour of the systems from descriptions of their components and 
hence to compare design proposals on the basis of the performance 
of implementations.  Perhaps instructional planning is so inherently 
complex that relatively undisciplined methods are necessary.

10.3.1 Lessons

A ‘lesson’ is a social concept rather than a theoretical one, unless it is 
considered that it arose because of assumptions about the optimum 
attention or endurance span of learners.  AI-ED systems generally do 
not have a notion of a lesson, that is, a limited period of instruction 
on a single topic.  Instructional guidelines developed by studying 
teachers in classroom lessons have relevance to AI-ED only if they 
have lesson-independent merit or if students may assume they 
transfer to AI-ED systems.

Classroom interactions are structured by complex social 
conventions.  What students learn is influenced by their reasoning 
backwards from such conventions.  For example, VanLehn (1987) 
argues that lessons are assumed to encapsulate a single learning 
episode and that that assumption may help disambiguate potentially 
confusing instructional actions.  To be specific, he suggests that the 
confusion of the two-column subtraction example (discussed in 
section 10.1) might be overcome by an assumption that only one 
new element is introduced at a time.  So, the second axiom above 
might be re-expressed as:
2. State(s,[],t) and  
  I-Action(present-positive,[p,[f,g],a]) → 
  State(s,B(s,f → a) or B(s,g → a),
   present-positive([p,[f,g],a],t))

that is, the student believes that only one or other of the features is 
relevant to the action.

Although there may be only one thing to learn in a lesson, several 
instructional actions may be necessary to cause that to happen.  

10.3    Instructional planning    345   



Therefore, it is necessary to consider the planning of sequences 
of actions in lessons.  The principles identified by Leinhardt and 
Ohlsson (1990), given in section 3.5, are relevant to this, and Gagné, 
Briggs and Wager (1992) suggest that a lesson should be based upon 
the sequence of nine instructional events they identify (given in 
section 10.2).  AI-ED systems generally do not have explicit rules 
for planning lesson segments, such structures emerging from their 
dialogue management networks, blackboards, and so on.

10.3.2 Curricula

Educationalists have a strong proprietary interest in the subject of 
curricula and AI-ED system designers would perhaps be unwise to 
attempt to redefine or to over-simplify the concept.  Nonetheless, 
if we regard a curriculum to be an organised sequence of lessons 
(which we have taken to be instructional sessions on a single topic), 
then the main new problem concerns how a sequence of topics may 
form a coherent curriculum, or, conversely, how a complex topic 
may be decomposed into a sequence of lesson-sized sub-topics.

In those terms, planning a curriculum is just an instance of the 
general planning problem, and, as Lesgold (1988) discusses, we can 
expect standard difficulties, such as the interdependence of subgoals 
and the simultaneous achievement of multiple objectives.  A learning 
hierarchy (discussed in section 10.2) is a pre-specified plan for a 
curriculum, although it is under-specified because a hierarchy does 
not determine a unique sequence of lessons.  A valid curriculum 
is one which is, in technical tems, a topological sort of the nodes 
of the hierarchy.  Moreover, any particular target concept can be 
addressed by a number of learning hierarchies.  For example, a 
curriculum on car maintenance might be organised by components 
(engine, clutch, exhaust, ...), by mechanisms (electrical, mechanical, 
...), by symptoms (lights off, engine stalls, ...), and so on.  Planning 
a curriculum to satisfy multiple hierarchies, which might specify 
conflicting orderings, is not straightforward.

346    Computational Mathetics



AI-ED systems tend not to plan curricula in detail for obvious 
practical reasons.  If a curriculum is a sequence of lessons, which are 
sequences of instructional actions, then curriculum planning would 
involve the consideration of states reachable after such actions, that 
is, the states S in expressions such as

State(s,S,ian(xn,..ia2(x2,ia1(x1,t0))..))

where n may be a very large number.  Given the indeterminacy and 
cost of the learning and diagnostic processes and the large number 
of potential events, n is usually kept small (giving the opportunism 
often considered characteristic of instructional planning). 
 
10.4 Modes of interaction

Instructional systems design separates the organisation of content 
from the consideration of the means of delivery to the student.  

This is a broad subject but we will restrict ourselves to considering 
possible arrangements between learners and teachers (or computer-
based systems) from the point of view of instructional theory.  In 
particular, we can distinguish individualised instruction (one learner, 
no teacher), tutoring (one learner, one teacher), and group instruction 
(several learners, one teacher).

10.4.1 Individualised instruction

Individualised instruction is an undertaking whose purpose is to help 
people learn on their own and therefore one which most teachers 
would consider desirable.  Individualised instruction takes various 
forms, such as independent study plans, self-directed study, learner-
centred programmes, self-pacing, student-determined instruction 
and computer-adaptive instruction (Gagné, Briggs and Wager, 
1992).  The last of these is, of course, of most relevance here.  It is 
fundamentally different to the others in the list because it is the only 
form of individualised instruction where the delivery system is not 
passive.  

10.3.2    Curricula    347   



With the other forms, “experience has indicated that satisfactory 
performance of individualized systems depends upon maintenance 
of appropriate procedures.  It is owing to a lack of continuing support 
for these routines that individualized systems typically fail” (Gagné, 
Briggs and Wager, 1992).  With computer-adaptive instruction, the 
system itself may be proactive in adapting itself to the learner’s needs 
and that, obviously, is one of the main motivations for developing 
AI-ED systems.  It is not clear that studies of non-computer-based 
individualised instruction provide many lessons for designers of 
AI-ED systems, except to warn that learning environments without 
“maintenance of appropriate procedures” typically fail, although as 
the AI-ED systems take more of an active role then studies of human 
tutoring may be informative, as we may now consider.

10.4.2 Tutoring

The result that students receiving one-to-one tutoring achieve two 
standard deviations more than students receiving conventional 
classroom instruction (Bloom, 1984) is often quoted (but never 
duplicated: researchers seem content to settle for this).  It leads some 
to regard tutoring as the optimum teaching-learning arrangement 
and, as a result, to empirical studies to try to determine the nature of 
successful human tutoring.  Such studies should inform the design 
of computer-based tutors.

However, Merrill, Reiser, Merrill and Landes (1993) conclude, 
after reviewing several such studies (Fox, 1991; Graesser, Person 
and Huber, 1993; Lepper and Chabay, 1988; Littman, Pinto and 
Soloway, 1990; McArthur, Stasz and Zmuidzinas, 1990), that “rather 
than a consistent view of tutorial strategies, [the] empirical studies 
of tutors have suggested a number of competing accounts of tutorial 
guidance.”  It seems that researchers identify different aspects of 
human tutoring as the key process.  

For example, Fox (1991) considers it most important that tutors 
offer frequent confirmatory feedback to keep students on productive 

348    Computational Mathetics



paths, the absence or delay of such feedback being interpreted as 
a signal that an error has occurred.  Lepper and Chabay (1988) 
concentrate on the motivational aspects, believing that the main goal 
of tutors is to keep students from becoming discouraged.  So good 
tutors help students attribute failure to the nature of the problem, 
not their own inadequacy, and help them repair errors themselves 
by leading questions, not by direct telling.  Littman, Pinto and 
Soloway (1990), however, consider that tutors structure the entire 
interaction around quite direct feedback after errors.  McArthur, 
Stasz and Zmuidzinas (1990) describe their successful tutors as 
using ‘microplans’ (that is, particular sets of behaviour) in certain 
problem-solving situations.  Yet again, Graesser, Person and Huber 
(1993) conclude that tutoring is successful because it gives students 
the opportunity to learn through asking their own questions.  Even 
allowing for the academic need to find a different point of view, it 
is disconcerting that the nature of human tutoring should appear so 
elusive.

The methodology of such studies is typically to establish a set 
of categories of tutor and student action, to transcribe protocols to 
establish which sequences of actions occur, and to attempt to explain 
why observed sequences are successful.  For example, Merrill, 
Reiser, Merrill and Landes (1993) define 36 categories, which are 
worth listing in full (in Figure 10.1) in order to indicate the kind of 
analysis attempted.

They then count how often one type of event is followed by 
another type of event, for example, a tutor confirmation or elaboration 
follows a student problem-solving action on 44% of occasions, or 
66% of correct such actions.  Tutors give error feedback after 53% 
of errors, usually as the next action.  On the basis of a battery of 
such statistics, Merrill, Reiser, Merrill and Landes (1993) develop 
“a theory of tutorial guidance”, the main principles of which are 
quite hard to extract from an entirely verbal description.  It seems 
that “tutors assist students’ problem-solving with careful guidance, 
in which the tutor keeps the student’s problem-solving on track 

10.4.2    Tutoring    349   



        Student actions   Tutor actions
(Student constructs a (Tutor performs part of
problem solution) the problem-solving)
 Student correction  Tutor example
 Student elaboration  Tutor focus attention
 Student example  Tutor read
 Student focus attention  Tutor refer
 Student indicate difficulty  Tutor type
 Student indicate lack (Tutor offers guidance for 
     of understanding student’s problem-solving)   
 Student read  Tutor confidence builder
 Student refer  Tutor hint
 Student set goal  Tutor indicate difficulty
 Student type  Tutor set goal
(Student asks for help  Tutor supportive statement
from tutor) (Tutor confirms a student step)
 Assist plan assertion  Tutor confirmation
 Assist plan question  Tutor elaboration
 Assist understanding (Tutor gives error feedback
 Student informational after an incorrect step)
     request  Tutor correction
(Student understands  Tutor plan based feedback
tutor’s utterances)  Tutor surface feature feedback 
 Student confirmation (Tutor attempts to assess the
(Student checks the student’s understanding)
current answer)  Tutor probe
 Student simulate process  Tutor prompt
(Miscellaneous non-task- (Tutor helps student check 
related utterances) the correct answer)
 Student comment  Tutor simulate process
  (Miscellaneous non-task-
  related utterances)
   Tutor comment  

Figure 10.1.  Categories of student and tutor actions

350    Computational Mathetics



via ongoing confirmatory guidance and new goals to achieve after 
correct steps and error feedback after errors.”  The content and 
timing of error feedback depends upon an assessment of the costs of 
floundering and the potential benefits of self-repair.

In their study, McArthur, Stasz and Zmuidzinas (1990) categorise 
tutor actions into 44 types under eight headings: 

multipurpose (9 types)
task management (11 types)
performance assessment (4 types)
knowledge assessment (3 types)
remedial - simple techniques (7 types)
remedial - complex techniques (8 types)
local clarification (1 type)
motivation (1 type) 

It is reasonable to wonder exactly how these 44 types relate to the 
19 categories of tutor action listed in Figure 10.1.  At this stage, the 
most useful conceptualisations to develop a theory of tutoring are not 
clear, but it seems rather redundant for each empirical study to begin 
by inventing a new categorisation.  We might also wonder how these 
categories differ from, say, the 120 relations listed by Hovy (1993), 
discussed in section 9.1, for general discourse.  Tutorial discourse 
is only a special case of general discourse, and it seems that more 
general techniques may be adapted.

As dialogue game theory shows, and as the references to 
microplans and tutoring schemata indicate, we need to consider 
sequences of interactions, rather than action-reaction pairs, in order 
to develop an informative theory of successful tutoring.  We need 
also to take account of the evolving context.  A premise of cognitive 
apprenticeship is that interactions move through four stages - 
modelling, coaching, fading and reflecting - and clearly tutorial 
actions differ in these stages.

A computational mathetics view would be that tutorial actions 
would be determined by an analysis of the many relevant factors 
(ultimately - it is not possible to perform such an analysis now).  

10.4.2    Tutoring    351   



If, for example, the system believes p and believes that the student 
believes f, an incorrect version of p, then the system might select 
one of a number of ‘emendation procedures’.  For example, McCoy 
(1989) suggests that misconceptions may be emended by a three-
part system output: (i) a denial of f, (ii) an assertion of p, and (iii) 
a ‘justification’, often based on a refutation of the user’s support 
for f.  Various frames are specified for addressing certain kinds of 
misconception - for example, for a ‘misattribution’:
 B(c,B(s,f: x has attribute y with value v)) and  
  B(c,p: x has attribute y with value w) and
  Ǝz B(c,z has attribute y with value v) and 
  B(c,Similar(x,z))
   → Deny(f) and Assert(p) and
    Comment("Have you confused x and z", etc)

The appropriate procedure will, in principle, depend upon many 
factors (in practice, for real-time interactions, the analysis might 
be quite shallow).  It should take account of previous interactions, 
motivational factors, the student’s and tutor’s goals, the kind of 
misconception identified, the degree of confidence the system 
has in its diagnosis, and so on.  The action decided upon may be 
simple (for example, to state the correct conception) or complex.  
For example, if the system considers that the student has developed 
the misconception through some impasse-repair mechanism then 
it may decide to address this mechanism, rather than the specific 
misconception itself, that is, to point out that ‘syntactic patches’ 
to overcome local difficulties are not always productive, with the 
intention that this leads to longer-term learning benefits.

Complex though such descriptions will be, they will avoid over-
simplistic interpretations of empirical data, for example, to conclude 
that remediation is no better than re-teaching, without qualification 
as to when these actions are carried out.  Re-teaching is always a 
possible response when an error is detected.  However, if a problem-
solving process involves many steps and the system confidently 
identifies one step as in error, then remediation focussing on that one 
step seems likely to be more effective than re-teaching the whole 

352    Computational Mathetics



procedure.  If, on the other hand, the system believes that there are 
several error steps or that it cannot reliably attribute failure to only 
one step, then re-teaching may be a better option.  As discussed in 
the previous chapter, tutorial dialogues are exceptionally subtle.  
Nonetheless, a theory of instructional communication should follow 
(as discussed in section 9.4) from theories of rational interaction and 
action.  

The various so-called Socratic strategies should be followed by 
AI-ED systems not because they have been observed in teacher-
student interactions but if an analysis predicts beneficial effects.  
For example, a counter-example (that is, a problem p such that, in a 
simple case, the predicted student’s answer differs from the system’s 
(correct) answer) might be presented if the predicted student’s 
answer violates any beliefs ascribed to the student about answers 
in general (for example, a fraction problem for which the predicted 
answer is 0).  

Different instructional interactions may then ensue depending 
on whether or not the student realises that the example is in fact a 
counter-example.  Among many more subtle remediations, we might 
imagine the use of ‘garden-path problems’, that is, problems which 
(according to the student model) the student can solve but only in such 
a tortuous fashion that she may realise that her current knowledge, 
although not actually incorrect, is inadequate.  Methods for the 
automatic generation of such problems have yet to be developed.  
Formally, it would appear to be related to the conditions which 
promote reflection and to the results of any reflective process.

10.4.3 Group instruction

The gap between empirically-based analyses of tutoring and the 
kinds of descriptions we are seeking in computational mathetics 
is even more apparent when we consider the many forms of group 
instruction, which (from our definition of instruction) includes 
teacher-led and non-teacher-led activities.  There have, of course, been 

10.4.2    Tutoring    353   



very many studies of group-based classroom activities but it is hard 
to pinpoint their relevance for AI-ED system design.  If we consider 
the nine kinds of instructional event identified by Gagné, Briggs and 
Wager (1992), given in section 10.2, then it is to be anticipated that 
most if not all of them are harder to perform satisfactorily with a 
large group of students than with a single student.  For example, 
stimulating recall of relevant previous knowledge becomes difficult 
if the members of the group have different previous experiences, and 
providing learning guidance and assessing performance becomes 
much harder to manage as learners take different paths. 

All in all, one might conclude that group instruction is an 
inferior form of instruction made necessary only by the constraints 
of educational budgets and therefore one which AI-ED systems 
need not aim to support.  However, as we have seen, there has been 
increased enthusiasm recently for systems embedding instruction in 
a group setting.  The reasons given are the following (Brown and 
Palinscar, 1989; Resnick, 1989):

Cooperative learning provides a supportive means of promoting • 
the use of self-regulatory strategies, with reduced anxiety and 
increased motivation.
More complex problems can be tackled in a collaborative group • 
than an individual could accomplish.
The collaborative group provides support for learners at • 
different levels of expertise, enabling them to use skills that are 
just emerging.
Conflict between opposing viewpoints plays an important and • 
positive role in cooperative instructional settings as a means of 
building and elaborating knowledge.
Cooperative learning provides opportunities to experience • 
knowledge in use, in contexts where the meaningfulness of 
individual elements of an activity to the whole is apparent to the 
learner.
It is for educational research to confirm these hypotheses, or 

rather to work out more precise descriptions of when they apply.  

354    Computational Mathetics



Computational mathetics aims to clarify some of the concepts (such 
as cooperation, collaboration, self-regulatory strategies, motivation, 
conflict, and viewpoints) and mechanisms, and although we have 
described some work in this direction there is obviously much more 
to do.

10.5 Evaluation

Discussions of instructional design invariably end with a 
consideration of the problem of evaluation.  The computational 

mathetics view of evaluation is rather radical - it aims to eliminate it.  
As evaluation processes are so deeply ingrained in any educational 
enterprise, this startling aim needs some clarification.  

There are three different kinds of evaluation involved: of the 
learner or group of learners; of the AI-ED system; and of the AI-
ED system design process.  At the moment, these three kinds of 
evaluation are conflated.  It seems that the only way to evaluate 
AI-ED systems (the process of designing them and the products 
themselves) is to see if they deliver what they promise, that is, that 
students learn more, faster, better, and so on.  Of course, students will 
always need to be evaluated for other purposes but their evaluation is 
not necessarily a reliable guide to the qualities of an AI-ED system.  
The evaluation of an AI-ED system design process (such as one 
based on a computational mathetics type of analysis) must be made 
by comparing it with alternatives.

Imagine the following situation: we have a comprehensive, 
reliable theory of learning, instruction, diagnosis, dialogue, 
motivation, metacognition, and everything else needed to design an 
AI-ED system (it is quite a feat of imagination).  Those theories lead 
inexorably, analytically to the design of a specific AI-ED system 
which, according to the theories, is optimum for that learning 
situation.  Imagine, now, that those theories actually predict that 
learners will only learn 2% more than by some other method, such as 
reading a book.  If, nonetheless, the system is implemented, it will, 

10.4.3    Group instruction    355   



because our perfect theories predict so, yield only a 2% change in 
learner performance.  This may be considered a ‘failure’.  However, 
the AI-ED system design process would have been flawless: it would 
have produced the optimum design for the circumstances.

The converse situation may more easily be imagined: we have 
scanty, unreliable theories, which we interpret loosely to design an 
AI-ED system, which, lo-and-behold, produces significant learning 
benefits (or not, as the case may be), although we are not sure why.  
In this situation, the design process is poor, despite the ‘success’.

The aim of computational mathetics is to move towards a 
situation where we have reliable, precise theories from which 
systems may be formally derived which will produce the learning 
benefits predicted by the theories.  If the theories are sufficiently 
reliable, then, by definition, we will not need to evaluate student 
performance.  Clearly, however, we are some way from the objective 
expressed in chapter 3:  

 

Informal 
theories

 Informal 
principles

Experimental 
  systems

Empirical 
evaluation

many iterations

Informal 
theories

 Informal 
principles

Experimental 
  systems

Empirical 
evaluation

fewer iterations

Semi-formal 
 theories

Evaluate by 
simulation

 Formal 
theories

  Formal 
principles

  Derived 
  systems

Demonstration

empirical fine-tuning

 
 

 

beautiful theory and

356    Computational Mathetics



References
Aiello, L.C., Cialdea, M. and Nardi, D. (1993).  Reasoning about student knowledge and 

reasoning, Journal of Artificial Intelligence in Education, 5, 199-254.
Aiello, L. and Micarelli, A. (1990).  SEDAF: an intelligent educational system for 

mathematics, Applied Artificial Intelligence, 4, 15-37.
Allen, J.F. (1984).  Towards a general theory of action and time, Artificial Intelligence, 23, 

123-154.
Allen, J.F. (1995).  Natural Language Understanding, Redwood City: Benjamin/

Cummings.
Anderson, A. and Belnap, N. (1975).  Entailment: the Logic of Relevance and Necessity, 

Princeton: Princeton University Press.
Anderson, J.R. (1983).  The Architecture of Cognition, Cambridge, Mass.: Harvard 

University Press.
Anderson, J.R. (1993).  Rules of the Mind, Hillsdale, N.J.: Erlbaum.
Anderson, J.R., Boyle, C.F., Corbett, A.T. and Lewis, M.W. (1990).  Cognitive modelling 

and intelligent tutoring, Artificial Intelligence, 42, 7-49.
Anderson, J.R., Boyle, C.F., Farrell, R. and Reiser, B.J. (1989).  Cognitive principles in the 

design of computer tutors, in P. Morris (ed.), Modelling Cognition, New York: Wiley.
Anderson, J.R., Boyle, C.F. and Yost, G. (1985).  The geometry tutor, Proc. of the Int. Joint 

Conf. on Artificial Intelligence, Los Angeles.
Anderson, J.R., Conrad, F.G. and Corbett, A.T. (1989).  Skill acquisition and the Lisp tutor.  

Cognitive Science, 13, 467-505.
Anderson, J.R. and Reiser, B.J. (1985).  The Lisp tutor, Byte, 10, 4, 159-175.
André, E., Graf, W., Heinsohn, J., Nebel, B., Profitlich, H.-J., Rist, T. and Wahlster, W. 

(1993).  PPP - Personalized Plan-based Presenter, DFKI Report D-93-5, Saarbrucken, 
Germany.

Arens, Y., Hovy, E. and van Mulken, S. (1993).  Structure and rules in automated multimedia 
presentation planning, Proc. of Int. Joint Conf. on Artificial Intelligence, Chambery.

Baker, M.J. (1994).  A model for negotiation in teaching-learning dialogues, Journal of 
Artificial Intelligence in Education, 5, 199-254.

Bann, S., ed. (1974).  The Tradition of Constructivism, New York: Viking.
Barrett, A. and Weld, D.S. (1994).  Partial-order planning, Artificial Intelligence, 67, 71-

112.
Barwise, J. and Perry, J. (1983).  Situations and Attitudes, Cambridge, MA: MIT Press.
Bauer, M., Biundo, S., Dengler, D., Koehler, J. and Paul, G. (1993).  PHI - a logic-based tool 

for intelligent help systems, Proc. of the Int. Joint Conference on Artificial Intelligence, 
Chambery.

Bell, B.L. and Bareiss, R. (1993).  Sickle Cell Counselor: using a goal-based scenario to 
motivate exporation of knowledge in a museum context, Proc. of the World Conference 
on Artficial Intelligence in Education, Edinburgh: AACE.

Beller, S. and Hoppe, H.U. (1993).  Deductive error reconstruction and classification in a 
logic programming framework, Proc. of the World Conference on Artficial Intelligence 
in Education, Edinburgh: AACE.

Bereiter, C. and Scardamalia, M. (1989).  Intentional learning as a goal of instruction, 

References    357   



in L.B. Resnick (ed.), Knowing, Learning and Instruction, Hillsdale, N.J.: Lawrence 
Erlbaum. 

Bergadano, F. and Gunetti, D. (1993).  An interactive system to learn functional logic 
programs, Proceedings of the International Joint Conference on Artificial Intelligence, 
Chambery.

Bickhard, M.H. and Terveen, L. (1995).  Foundational Issues in Artificial Intelligence and 
Cognitive Science, Amsterdam: Elsevier.

Bielaczyc, K., Pirolli, P. and Brown, A.L. (1993).  Strategy training in self-explanations 
and self-regulation strategies for learning computer programming, Technical Report 
CSM-5, UC Berkeley.

Bierman, D., Breuker, J. and Sandberg, J., eds. (1989).  Artificial Intelligence and Education: 
Synthesis and Reflection, Springfield, VA: IOS.

Birnbaum, L., ed. (1991a).  Proceedings of the Conference on the Learning Sciences, 
Charlottesville: AACE.

Birnbaum, L. (1991b).  Rigor mortis, Artificial Intelligence, 47, 57-77.
Bhuiyan, S.H. (1992).  Supporting students in the use of mental models of recursion, ARIES 

Technical Report 93-4, Dept. of Computational Science, University of Saskatchewan,
Bloch, G. and Farrell, R. (1988).  Promoting creativity through argumentation, Proc. of 

Intelligent Tutoring Systems 88, Montreal.
Bloom, B.S. (1984).  The 2 sigma problem: the search for methods of group instruction as 

effective as one-to-one tutoring, Educational Researcher, 13, 4-16.
Blumenthal, B. and Porter, B.W. (1994).  Analysis and empirical studies of derivational 

analogy, Artificial Intelligence, 67, 287-327.
Bonar, J. and Cunningham, R. (1988).  BRIDGE: an intelligent tutor for thinking about 

programming, in J. Self (ed.), Artificial Intelligence and Human Learning, London: 
Chapman and Hall.

Bond, A.H. and Gasser, L. (1988).  Readings in Distributed Artificial Intelligence, San 
Mateo: Morgan Kaufmann.

Bos, E. and van de Plassche, J. (1994).  A knowledge-based English verb form tutor, Journal 
of Artificial Intelligence in Education, 5, 107-129.

Brazdil, P.B. (1992).  Integration of knowledge in multi-agent environments, in E. Costa 
(ed.), New Directions for Intelligent Tutoring Systems, Berlin: Springer-Verlag.

Bredeweg, B. and Winkels, R. (1994).  Student modelling through qualitative reasoning, 
in J.E. Greer and G.I. McCalla (eds.), Student Modelling: the Key to Individualized 
Knowledge-Based Instruction, Berlin: Springer-Verlag.

Breuker, J. and Wielinga, B.J. (1989).  Model driven knowledge acquisition, in P. Guida and 
C. Tasso (eds.), Topics in the Design of Expert Systems, Amsterdam: North-Holland.

Brna, P., Ohlsson, S. and Pain, H., eds. (1993).  Proceedings of AI-ED 93, Charlottesville: 
AACE.

Brooks, R.A. (1991).  Intelligence without representation, Artificial Intelligence, 47, 139-
159.

Brown, A. (1987).  Metacognition, executive control, self-regulation and other more 
mysterious mechanisms, in F.E. Weinert and R.H. Kluwe (eds.), Metacognition, 
Motivation and Understanding, Hillsdale, N.J.: Lawrence Erlbaum.

Brown, A.L. and Palinscar, A.S. (1989).  Guided, cooperative learning and individual 
knowledge acquisition, in L.B. Resnick (ed.), Knowing, Learning, and Instruction, 

358    Computational Mathetics



Hillsdale, NJ: Erlbaum.
Brown, J.S. (1990).  Towards a new epistemology for learning, in C. Frasson and G. 

Gauthier (eds.), Intelligent Tutoring Systems: at the Crossroads of Artificial Intelligence 
and Education, Norwood, N.J.: Ablex.

Brown, J.S., Burton, R.R. and de Kleer, J. (1982).  Pedagogical, natural language, and 
knowledge engineering techniques in SOPHIE I, II and III, in D.H. Sleeman and J.S. 
Brown (eds.), Intelligent Tutoring Systems, London: Academic Press.

Brown, J.S., Collins, A. and Duguid, P. (1989).  Debating the situation, Educational 
Researcher, 18, 4, 10-12.

Brown, J.S. and VanLehn, K. (1980).  Repair theory: a generative theory of bugs in 
procedural skills, Cognitive Science, 4, 379-426.

Bruner, J.S. (1961).  The act of discovery ???
Bruner, J.S. (1966).  Toward a theory of instruction, New York: W.W. Norton.
Burton, R.R. and Brown, J.S. (1979).  An investigation of computer coaching for informal 

learning activities, Int. Journal of Man-Machine Studies, 11, 5-24.
Calistri-Yeh, R.J. (1991).  Utilizing user models to handle ambiguity and misconceptions in 

robust plan recognition, User Modeling and User-Adapted Interaction, 1, 289-322.
Caravita, S. and Hallden, O. (1994).  Re-framing the problem of conceptual change, 

Learning and Instruction, 4, 89-111.
Carberry, S. (1990).  Incorporating default inferences into plan recognition, Proc. AAAI-

90, Boston.
Carbonell, J.G. (1986).  Derivational analogy: a theory of reconstructive problem solving 

and expertise acquisition, in R.S. Michalski, J.G. Carbonell and T.M. Mitchell (eds.), 
Machine Learning: An AI Approach, Vol. 2, Los Altos: Morgan Kaufmann.

Carbonell, J.R. (1970).  AI in CAI: an artificial intelligence approach to computer-assisted 
instruction, IEEE Trans. on Man-Machine Systems, 11, 190-202.

Carlson, L. (1983).  Dialogue Games: An Approach to Discourse Analysis, Dordrecht: 
Reidel.

Cawsey, A. (1993).  Explanation and Interaction: The Computer Generation of Explanatory 
Dialogues, Cambridge, MA.: MIT Press.

Charniak, E. (1991).  Bayesian networks without tears, AI Magazine, 12, 4, 50-63.
Charniak, E. and Goldman, R.P. (1993).  A Bayesian model of plan recognition, Artificial 

Intelligence, 64, 53-79.
Chi, M.T.H., Bassok, M., Lewis, M.W., Reimann, P. and Glaser, R. (1989).  Self-

explanations: how students study and use examples in learning to solve problems, 
Cognitive Science, 13, 145-182.

Chi, M., Glaser, R. and Rees, E. (1982).  Expertise in problem solving, in R. Sternberg 
(ed.), Advances in the Psychology of Human Intelligence, Hillsdale, N.J.: Lawrence 
Erlbaum.

Chinn, C.A. and Brewer, W.F. (1993).  The role of anomalous data in knowledge acquisition: 
a theoretical framework and implications for science instruction, Review of Educational 
Research, 63, 1-49.

Cialdea, M. (1992).  Meta-reasoning and student modelling, in E. Costa (ed.), New 
Directions for Intelligent Tutoring Systems, Berlin: Springer-Verlag.

Clancey, W.J. (1979).  Transfer of rule-based expertise through a tutorial dialogue, PhD 
thesis, Stanford University.

References    359   



Clancey, W.J. (1984).  Methodology for building an intelligent tutoring system, in W. 
Kintsch, P.G. Polson and J.R. Miller (eds.), Methods and Tactics in Cognitive Science, 
Hillsdale: Erlbaum.

Clancey, W.J. (1987).  Knowledge-Based Tutoring: the GUIDON program.  Cambridge, 
Mass.: MIT Press.

Clancey, W.J. (1992a).  Representations of knowing - in defense of cognitive apprenticeship, 
Journal of Artificial Intelligence in Education, 3, 139-168.

Clancey, W.J. (1992b).  New perspectives on cognition and instructional technology, in E. 
Costa (ed.), New Directions for Intelligent Tutoring Systems, Berlin: Springer-Verlag.

Clancey, W.J. (1993).  GUIDON-MANAGE revisited: a socio-technical systems approach, 
Journal of Artificial Intelligence in Education, 4, 5-34.

Clancey, W.J. (1995).  A tutorial on situated learning, in T.-W. Chan and J.A. Self (eds.), 
Emerging Computer Technologies in Education, Charlottesville: AACE.

Clocksin, W.F. and Mellish, C.S. (1981).  Programming in Prolog, Berlin: Springer-
Verlag.

Cohen, D.K. (1989).  Teaching practice: plus ça change, in P. Jackson (ed.), Contributing 
to Educational Change: Perspectives on Research and Practice, Berkeley, CA.: 
McCutchan.

Cohen, L.J. (1992).  An Essay on Belief and Acceptance, Oxford: Clarendon Press.
Cohen, P.R. and Levesque, H.J. (1990a).  Intention is choice with commitment, Artificial 

Intelligence, 42, 213-261.
Cohen, P.R. and Levesque, H.J. (1990b).  Rational interaction as the basis for communication, 

in P.R. Cohen, J. Morgan and M.E. Pollack (eds.), Intentions in Communication, 
Cambridge, MA.: MIT Press.

Cohen, R., Schmidt, K. and van Beek, P. (1994).  A framework for soliciting clarification 
from users during plan recognition, Proc. of the 4th Int. Conf. on User Modeling, Cape 
Cod.

Collins, A. (1988).  Cognitive apprenticeship and instructional technology, in B.F.Jones 
and L. Idol (eds.), Dimensions of Thinking and Cognitive Instruction, Hillsdale, NJ: 
Lawrence Erlbaum.

Collins, A. and Brown, J.S. (1988).  The computer as a tool for learning through reflection, 
in H. Mandl and A. Lesgold (eds.), Learning Issues for Intelligent Tutoring Systems, 
New York: Springer-Verlag.

Collins, A., Brown, J.S. and Newman, S. (1989).  Cognitive apprenticeship: teaching the 
crafts of reading, writing and mathematics, in L.B. Resnick (ed.), Knowing, Learning 
and Instruction, Hillsdale, N.J.: Lawrence Erlbaum.

Collins, A. and Stevens, A.L. (1982).  Goals and strategies for inquiry teachers, in R. Glaser 
(ed.), Advances in Instructional Psychology II, Hillsdale, N.J.: Erlbaum.

Corno, L. and Snow, R. (1986).  Adapting teaching to individual differences among learners, 
in M. Wittrock (ed.), Handbook of Research on Teaching, New York: Macmillan.

Costa, E., ed. (1992).  New Directions in Intelligent Tutoring Systems, Berlin: Springer-
Verlag.

Costa, E., Duchènoy, S. and Kodratoff, Y. (1988).  A resolution based method for discovering 
students' misconceptions, in J.A. Self (ed.), Artificial Intelligence and Human Learning, 
London: Chapman and Hall.

Cox, R. and Brna, P. (1995).  Supporting the use of external representations in problem 

360    Computational Mathetics



solving: the need for flexible learning environments, to appear in Journal of Artficial 
Intelligence in Education.

Crews, T. and Biswas, G. (1993).  A tutor for trip planning: combining planning and 
mathematics problem solving, Proc. of the World Conference on Artficial Intelligence 
in Education, Edinburgh: AACE.

Crystal, D. (1987).  The Cambridge Encyclopedia of Language, London: Guild 
Publishing.

Davis, E. (1990). Representations of Commonsense Knowledge, Palo Alto: Morgan 
Kaufmann.

Davis, R. (1980).  Meta-rules: reasoning about control, Artificial Intelligence, 15, 179-
222.

Davis, R. and Smith, R.G. (1983).  Negotiation as a metaphor for distributed problem 
solving, Artificial Intelligence, 20, 63-109.

de Corte, E., Linn, M., Mandl, H. and Verschaffel, L., eds. (1991).  Computer-Based 
Learning Environments and Problem-Solving, New York: Springer-Verlag.

Dejong, G. and Mooney, R. (1986).  Explanation-based learning: an alternative view, 
Machine Learning, 1, 145-176.

de Jong, T. and Ferguson-Hessler, M.G.M. (1986).  Cognitive structures of good and poor 
novice problem solvers in physics, Journal of Educational Psychology, 78, 279-288.

de Kleer, J. (1986).  An assumption-based truth maintenance system, Artificial Intelligence, 
28, 127-162.

de Kleer, J. and Brown, J.S. (1981).  Mental models of physical systems and their acquisition, 
in J.R. Anderson (ed.), Cognitive Skills and their Acquisition, Hillsdale NJ: Erlbaum.

de Kleer, J. and Brown, J.S. (1984).  A physics based on confluences, Artificial Intelligence, 
24, 7-83.

de Kleer, J., Mackworth, A.K. and Reiter, R. (1992).  Characterizing diagnoses and systems, 
Artificial Intelligence, 56, 197-222.

de Kleer, J. and Williams, B.C. (1989).  Diagnosing with behavioral modes, Proceedings of 
the International Joint Conference on Artificial Intelligence, Detroit.

Del Soldata, T. and du Boulay, B. (1995).  Motivational tactics in tutoring systems, to 
appear in Journal of Artificial Intelligence in Education.

De Raedt, L., Lavrac, N. and Dzeroski, S. (1993).  Multiple predicate learning, Proceedings 
of the International Joint Conference on Artificial Intelligence, Chambery.

Derry, S. and Hawkes, L.W. (1993a).  Local cognitive modeling of problem-solving 
behavior: an application of fuzzy theory, in S. Lajoie and S. Derry (eds.), Computers as 
Cognitive Tools, Hillsdale, N.J.: Erlbaum.

Detterman, D.K. (1993).  The case for the prosecution: transfer as an epiphenomenon, in 
D.K. Detterman and R.J. Sternberg (eds.), Transfer on Trial: Intelligence, Cognition, 
and Instruction, Norwood, NJ: Ablex.

Detterman, D.K. and Sternberg, R.J., eds. (1993).  Transfer on Trial: Intelligence, Cognition, 
and Instruction, Norwood, NJ: Ablex.

Dewey, J. (1938).  Experience and Education, New York: Collier.
Dillenbourg, P. and Self, J.A. (1992).  A computational approach to socially distributed 

cognition, European Journal of Psychology and Education, 7, 353-372.
Di Sessa, A.A. (1987).  The third revolution in computers and education, Journal of 

Research in Science Education, 24, 343-367.

References    361   



Donini, F.M., Lenzerini, M., Nardi, D., Pirri, F. and Schaerf, M. (1990).  Non-monotonic 
reasoning, Artificial Intelligence Review, 4, 163-210.

Duncan, P.C. (1992).  The Space Shuttle Fuel Cell tutor: a simulation-based intelligent 
tutoring system with yoked expert systems, Journal of Artificial Intelligence in 
Education, 3, 297-313.

Durfee, H.H. and Lesser, V.R. (1989).  Negotiating task decomposition and allocation 
using partial global planning, in L. Gasser and M.N. Huhns (eds.), Distributed Artificial 
Intelligence II, San Mateo: Morgan Kaufmann.

Elliott, C. (1993).  Using the Affective Reasoner to support social simulations, Proc. of the 
Int. Joint Conf. on Artificial Intelligence, Chambery.

Eller, R. and Carberry, S. (1992).  A meta-rule approach to flexible plan recognition in 
dialogue, User Modeling and User-Adapted Interaction, 2, 27-53.

Elsom-Cook, M., ed. (1990).  Guided Discovery Tutoring Systems, London: Paul 
Chapman.

Elzer, S., Chu-Carroll, J. and Carberry, S. (1994).  Recognizing and utilizing user 
preferences in collaborative consultation dialogues, Proc. of the 4th Int. Conf. on User 
Modeling, Cape Cod.

Evertsz, R. (1989).  Refining the student's procedural knowledge through abstract 
interpretations, in D. Bierman, J. Breuker and J. Sandberg (eds.), Artificial Intelligence 
and Education, Amsterdam: IOS.

Fagin, R. and Halpern, J.Y. (1987).  Belief, awareness, and limited reasoning, Artificial 
Intelligence, 34, 39-76.

Farr, M.J. and Psotka, J., eds. (1992).  Intelligent Instruction by Computer, Washington, 
DC: Taylor and Francis.

Fernández-Castro, I., Verdejo, F. and Díaz-Ilarraza, A. (1993).  Architectural and planning 
issues in intelligent tutoring systems, Journal of Artificial Intelligence in Education, 4, 
357-395.

Flavell, J.H. (1976).  Metacognitive aspects of problem solving, in L. Resnick (ed.), The 
Nature of Intelligence, Hillsdale, NJ: Erlbaum.

Forbus, K. (1984).  Qualitative process theory, Artificial Intelligence, 24, 85-168.
Forbus, K. (1991).  Towards tutor compilers: self-explanatory simulations as an enabling 

technology, in L. Birnbaum (ed.), The Int. Conf. on the Learning Sciences, Evanston.
Ford, K. and Hayes, P, eds. (1991).  Reasoning Agents in a Dynamic World: The Frame 

Problem, Greenwich: JAI Press.
Foss, C.L. (1987).  Learning from errors in Algebraland, Technical Report IRL-87-003, 

Institute for Research on Learning, Palo Alto.
Fox, B.A. (1991).  Cognitive and interactional aspects of correction in tutoring, in P. 

Goodyear (ed.), Teaching Knowledge and Intelligent Tutoring, Hillsdale, NJ: Ablex.
Frasson, C. and Gauthier, G., eds. (1990).  Intelligent Tutoring Systems: at the Crossroads 

of Artificial Intelligence and Education, Norwood, N.J.: Ablex.
Friedrich, G. (1993).  Model-based diagnosis and repair, AI Communications, 6, 187-206.
Gagné, R.M., Briggs, L.J. and Wager, W.W. (1992).  Principles of Instructional Design, 

Fort Worth: Harcourt Brace Jovanovich.
Gan, A. (1922).  Konstruktivisma.  Kalinin: Tver.
Gardenförs, P. (1988).  Knowledge in Flux, Cambridge, Mass.: MIT Press.
Gazdar, G. and Mellish, C. (1989).  Natural Language Processing in Lisp: an Introduction 

362    Computational Mathetics



to Computational Linguistics, Reading, Mass.: Addison-Wesley.
Genesereth, M.R. and Ketchpel, S.P. (1994).  Software agents, Communications of the 

ACM, 37, 48-53.
Genesereth, M.R. and Nilsson, N.J. (1987).  Logical Foundations of Artificial Intelligence, 

Los Altos: Morgan Kaufmann.
Giangrandi, P. and Tasso, C. (1995).  Truth maintenance techniques for modelling students' 

behaviour, to appear in Journal of Artificial Intelligence in Education.
Ginsburg, M.L. (1993).  Essentials of Artificial Intelligence, San Mateo: Morgan 

Kaufmann.
Goldman, S.A. and Sloan, R.H. (1994).  The power of self-directed learning, Machine 

Learning, 14, 271-294.
Goldstein, I.P. (1979).  The genetic graph: a representation for the evolution of procedural 

knowledge, Int. J. of Man-Machine Studies, 11, 51-77.
Goodyear, P. (1991).  Teaching Knowledge and Intelligent Tutoring, Norwood, NJ: Ablex.
Graesser, A.C., Person, N.K. and Huber, J.D. (1993).  Question asking during tutoring and 

in the design of educational software, in M. Rabinowitz (ed.), Cognition, Instruction, 
and Educational Assessment, Hillsdale, NJ: Erlbaum.

Greeno, J.G. (1989).  Situations, mental models and generative knowledge, in D. Klahr and 
K. Kotovsky (eds.), Complex Information Processing, Hillsdale, NJ: Erlbaum.

Greeno, J.G., Smith, D.R. and Moore, J.L. (1993).  Transfer of situated learning, in D.K. 
Detterman and R.J. Sternberg (eds.), Transfer on Trial: Intelligence, Cognition, and 
Instruction, Norwood, NJ: Ablex.

Greer, J.E. and McCalla, G.I., eds. (1994).  Student Modelling: The Key to Individualised 
Knowledge-Based Instruction, Berlin: Springer.

Grice, H.P. (1975).  Logic and conversation, in P. Cole and J.L. Morgan (eds.), Speech Acts, 
New York: Academic Press.

Grosz, B. (1977).  The representation and use of focus in dialogue understanding, Stanford 
Reasearch Institute Technical Notes 5.

Grosz, B. and Kraus, S. (1993).  Collaborative plans for group activities, Proc. of Int. Joint 
Conference on Artificial Intelligence, Chambery.

Halff, H.M. (1993).  Prospects for automating instructional design, in J.M. Spector, M.C. 
Polson and D.J. Muriada (eds.), Automating Instructional Design, Englewood Cliffs, 
NJ: Educational Technology Publications.

Halpern, J.Y. and Moses, Y. (1992).  A guide to completeness and complexity of modal 
logics of knowledge and belief, Artificial Intelligence, 54, 319-379.

Hammond, K.J. (1990).  Explaining and repairing plans that fail, Artificial Intelligence, 
45, 173-228.

Hanks, W.F. (1991).  Preface to Lave, J. and Wenger, E., Situated Learning: Legitimate 
Peripheral Participation, Cambridge: Cambridge Univ. Press.

Harel, D. (1979).  First-Order Dynamic Logic.  New York: Springer.
Hawkes, L.W. and Derry, S.J. (1990).  Error diagnosis and fuzzy reasoning techniques for 

intelligent tutoring systems, Journal of Artificial Intelligence in Education, 1, 43-56.
Hayes, P.J., Ford, K.M. and Agnew, N. (1994).  On babies and bathwater, AI Magazine, 

15, 4, 15-26.
Hays, D.G. (1967).  Introduction to Computational Linguistics, New York: Elsevier.
Hewitt, C. (1986).  Offices are open systems, ACM Transactions on Office Information 

References    363   



Systems, 4, 271-286.
Hill, R.W. and Johnson, L.J. (1995).  Situated plan attribution, to appear in Journal of 

Artificial Intelligence in Education. 
HIntikka, J. (1962).  Knowledge and Belief, Ithaca: Cornell University Press.
Hirsch, E.D. (1988).  Cultural Literacy, New York: Vintage.
Hofstadter, R. (1962).  Anti-intellectualism in American life, New York: Vintage.
Holland, J.H., Holyoak, K.J., Nisbett, R.E. and Thagard, P.R. (1986).  Induction: Processes 

of Inference, Learning and Discovery, Cambridge, Mass.: MIT Press.
Hoppe, H.U. (1993).  Cognitive apprenticeship - the emperor’s new method?, Journal of 

Artificial Intelligence in Education, 4, 49-54.
Hoppe, H.U. (1994).  Deductive error diagnosis and inductive error generalization, Journal 

of Artificial Intelligence in Education, 5, 27-49.
Hovy, E.H. (1993).  Automated discourse generation using discourse structure relations, 

Artificial Intelligence, 63, 34-385.
Huang, X. (1994).  Modelling a student's inconsistent beliefs and awareness, in J.E. Greer 

and G.I. McCalla (eds.), Student Modelling: the Key to Individualized Knowledge-
Based Instruction, Berlin: Springer-Verlag.

Huang, X., McCalla, G.I., Greer, J.E. and Neufeld, E. (1991).  Revising deductive 
knowledge and stereotypical knowledge in a student model, User Modeling and User-
Adapted Interaction, 1, 87-115.

Hustadt, U. (1994).  A multi-modal logic for stereotyping, Proc. of the 4th Int. Conf. on 
User Modeling, Hyannis.

Hull, R. (1985).  The Language Gap: How Classroom Dialogue Fails.  London: Methuen.
Hutchins, E. (1991).  The social organization of distributed cognition, in L. Resnick, J. 

Levine and S. Teasley (eds.),  Perspectives on Socially Shared Cognition, Hyattsville, 
MD: American Psychological Association.

Ikeda, M. and Mizoguchi, R. (1994).  FITS: a framework for ITS - a computational model 
of tutoring, Journal of Artificial Intelligence in Education, 5, 319-348.

Jones, R. and VanLehn, K. (1992).  A fine-grained model of skill acquisition, Proc. of 14th 
annual meeting of the Cognitive Science Society, Hillsdale: Erlbaum.

Kaelbling, L.P. and Rosenschein, S.J. (1990).  Action and planning in embedded systems, 
in P. Maes (ed.), Designing Autonomous Agents, Cambridge, Ma.: MIT Press.

Kamsteeg, P.A. (1994).  Teaching Problem Solving by Computer, Den Haag: CIP
Kass, R. (1991).  Building a user model implicitly from a cooperative advisory dialog, User 

Modeling and User-Adapted Interaction, 1, 203-258.
Katz, S. and Lesgold, A. (1993).  The role of the tutor in computer-based collaborative 

learning situations, in S.P. Lajoie and S.J. Derry (eds.), Computers as Cognitive Tools, 
Hillsdale: Erlbaum.

Katz, S., Lesgold, A., Eggan, G. and Gordin, M. (1994).  Modelling the student in 
SHERLOCK II, in J.E. Greer and G.I. McCalla (eds.), Student Modelling: the Key to 
Individualized Knowledge-Based Instruction, Berlin: Springer-Verlag.

Kautz, H.A. (1990).  A circumscriptive theory of plan recognition, in P.R. Cohen, J. Morgan 
and M.E. Pollack (eds.), Intentions in Communications, Cambridge: MIT Press.

Kay, J. (1994).  Lies, damned lies and steretypes: pragmatic approximations of users, Proc. 
of the 4th Int. Conf. on User Modeling, Hyannis.

Kolodner, J.L. (1991).  Improving human decision making through case-based decision 

364    Computational Mathetics



aiding, AI Magazine, 12, 2, 52-68.
Kolodner, J.L. (1993).  Case-Based Reasoning, San Mateo: Morgan Kaufmann.
Kommers, P., Jonassen, D. and Mayes, T. (1992).  Cognitive Tools for Learning, Berlin: 

Springer.
Kono, Y., Ikeda, M. and Mizoguchi, R. (1994).  THEMIS: a nonmonotonic inductive 

student modeling system,  Journal of Artificial Intelligence in Education, 5, 371-413.
Konolige, K. (1988).  Reasoning by introspection, in P. Maes and D. Nardi (eds.),  Meta-

Level Architectures and Reflection, Amsterdam: North-Holland.
Kuipers, B. (1986).  Qualitative simulation, Artificial Intelligence, 29, 289-388.
Laird, J., Rosenbloom, P. and Newell, A. (1986).  Universal Subgoaling and Chunking: the 

Automatic Generation and Learning of Goal Hierarchies, Hingham: Kluwer.
Lajoie, S.P. (1993).  Computer environments as cognitive tools for enhancing learning, in 

S. Lajoie and S. Derry (eds.), Computers as Cognitive Tools, Hillsdale, N.J.: Erlbaum.
Lajoie, S.P. and Derry, S.J., eds. (1993).  Computers as Cognitive Tools, Hillsdale: 

Erlbaum.
Lakemeyer, G. (1993).  All they know: a study in multi-agent autoepistemic reasoning, 

Proc. of Int. Joint Conference on Artificial Intelligence, Chambery.
Lakoff, G. (1987).  Women, Fire and Dangerous Things, Chicago: University of Chicago 

Press.
Lapointe, S., Ling, C. and Matwin, S. (1993).  Constructive inductive logic programming, 

Proceedings of the International Joint Conference on Artificial Intelligence, Chambery.
Larkin, J., Chabay, R. and Sheftic, C., eds. (1992).  Computer-Assisted Instruction and 

Intelligent Tutoring Systems: Establishing Communication and Collaboration, Hillsdale, 
N.J.: Lawrence Erlbaum.

Lave, J. and Wenger, E. (1991).  Situated Learning: Legitimate Peripheral Participation, 
Cambridge: Cambridge Univ. Press.

Leinhardt, G. and Ohlsson, S. (1990).  Tutorials on the structure of tutoring from teaching, 
Journal of Artificial Intelligence in Education, 2, 1, 21-46.

Lemmon, E.J. (1965).  Beginnng Logic, London: Nelson.
Lenat, D.B. (1982).  AM: discovery in mathematics as heuristic search, in R. Davis and 

D.B. Lenat (eds.), Knowledge-Based Systems in Artificial Intelligence, San Francisco: 
McGraw-Hill.

Lepper, M.R. and Chabay, R.W. (1988).  Socializing the intelligent tutor: bringing empathy 
to computer tutors, in H. Mandl and A.M.Lesgold (eds.), Learning Issues for Intelligent 
Tutoring Systems, New York: Springer-Verlag.

Lepper, M.R., Woolverton, M., Mumme, D.L. and Gurtner, J-L. (1993).  Motivational 
techniques of expert human tutors: lessons for the design of computer-based tutors, in 
S.P. Lajoie and S.J. Derry (eds.), Computers as Cognitive Tools, Hillsdale: Erlbaum.

Lesgold, A.M. (1988).  Toward a theory of curriculum for use in designing intelligent 
instructional systems, in H. Mandl and A.M.Lesgold (eds.), Learning Issues for 
Intelligent Tutoring Systems, New York: Springer-Verlag.

Lesgold, A.M., Lajoie, S.P., Bunzo, M. and Eggan, G. (1992).  Sherlock: a coached practice 
environment for an electronics troubleshooting job, in J.H. Larkin and R.W. Chabay 
(eds.), Computer-Assisted Instruction and Intelligent Tutoring Systems, Hillsdale, NJ: 
Erlbaum.

Levesque, H. (1984).  A logic of implicit and explicit belief, Proceedings AAAI-84, 

References    365   



Austin.
Levesque, H. (1990).  All I know: a study in autoepistemic logic, Artificial Intelligence, 

42, 263-309.
Littman, D., Pinto, J. and Soloway, E. (1990).  The knowledge required for tutorial planning: 

an empirical analysis, Interactive Learning Environments, 1, 124-151.
Lin, F. and Shoham, Y. (1992).  A logic of knowledge and justified assumptions, Artificial 

Intelligence, 57, 271-289.
Locke, J. (1690).  An Essay Concerning Human Understanding.
Maes, P. and Nardi, D., eds. (1988).  Meta-Level Architectures and Reflection, Amsterdam: 

North-Holland.
Mandl, H. and Lesgold, A., eds., (1988),  Learning Issues for Intelligent Tutoring Systems, 

New York: Springer-Verlag.
Mann, W.C. and Thompson, S.A. (1987).  Rhetorical structure theory: A  theory of text 

organization, in C. Polanyi (ed.), Discourse Structure, Norwood, NJ: Ablex.
Mark, M.A. and Greer, J.E. (1993).  Evaluation methodologies for intelligent tutoring 

systems, Journal of Artificial Intelligence in Education, 4, 129-153.
Martin, J.D. and VanLehn, K. (1993).  OLAE: progress toward a multi-activity, Bayesian 

student modeler, Proc. of the World Conference on Artficial Intelligence in Education, 
Edinburgh: AACE.

Maybury, M.T. (1994).  Research in multimedia and multimodal parsing and generation, to 
appear in Artificial Intelligence Review.

McArthur, D., Stasz, C., and Zmuidzinas, M. (1990).  Tutoring techniques in algebra, 
Cognition and Instruction, 7, 197-244.

McCarthy, J. and Hayes, P. (1969).  Some philosophical poblems from the standpoint 
of artificial intelligence, in B. Meltzer and D. Michie (eds.), Machine Intelligence 4, 
Edinburgh: Edinburgh Univ. Press.

McCoy, K.F. (1989).  Generating context-sensitive responses to object-related 
misconceptions, Artificial Intelligence, 41, 157-195.

McDermott, D. (1987).  A critique of pure reason, Computational Intelligence, 3, 151-
160.

Mengel, S. and Lively, W. (1991).  On the use of neural networks in intelligent tutoring 
systems, Journal of Artificial Intelligence in Education, 2, 43-56.

Merrill, D.C. and Reiser, B.J. (1994).  Scaffolding effective problem solving strategies in 
interactive learning environments, Proc. of the 16th Annual Conference of the Cognitive 
Science Society, Atlanta.

Merrill, D.C., Reiser, B.J., Merrill, S.K. and Landes, S. (1993).  Tutoring: guided learning 
by doing, Technical Report 45, The Institute for the Learning Sciences, Northwestern 
University.

Mitchell, T.M. (1982).  Generalization as search, Artficial Intelligence, 18, 203-226.
Mitchell, T.M., Keller, R.M. and Kedar-Cabelli, S.T. (1986).  Explanation-based 

generalization: a unifying view, Machine Learning, 1, 47-80.
Moore, J.D. (1989).  A reactive approach to explanation in expert and advice-giving 

systems, PhD thesis, University of California, Los Angeles.
Moore, J.D. (1995).  Participating in Explanatory Dialogues: Interpreting and Responding 

to Questions in Context, Cmabridge, Mass.: MIT Press.
Moore, J.D. and Paris, C.L. (1992).  Exploiting user feedback to compensate for the 

366    Computational Mathetics



unreliability of user models, User Modeling and User-Adapted Interaction, 2, 287-330.
Moore, J.D. and Pollack, M.E. (1992).  A problem for RST: the need for multi-level 

discourse analysis, Computational Linguistics, 18, 537-544.
Moyse, R. and Elsom-Cook, M., eds. (1992).  Knowledge Negotiation, London: Academic 

Press.
Murray, T. (1993).  Formative qualitative evaluation for ‘exploratory’ ITS research, Journal 

of Artificial Intelligence in Education, 4, 179-208.
Murray, T., Schultz, K., Brown, D. and Clement, J. (1990).  An analogy-based tutor for 

remediating physics misconceptions, Interactive Learning Environments, 1, 79-101.
Murray, T. and Woolf, B.P. (1992).  Tools for teacher participation in ITS design, Proc. of 

Intelligent Tutoring Systems 92, Montreal.
Murray, W.R. (1990).  A blackboard-based dynamic instructional planner, Report No. 

R-6376, FMC Corporation.
Musto, D. and Konolige, K. (1993).  Reasoning about perception, AI Communications, 6, 

207-212.
Negroponte, N. (1994).  Being Digital, New York: Hodder & Stoughton.
Newell, A. (1982).  The knowledge level,  Artificial Intelligence, 18, 87-127.
Newell, A. and Simon, H.A. (1972).  Human Problem Solving, Englewood Cliffs: Prentice-

Hall.
Newell, A. and Card, S.K. (1985).  The prospects for psychological science in human-

computer interaction, Human Computer Interaction, 1, 209-242.
Nichols, P., Pokorny, R., Jones, G., Gott, S.P. and Alley, W.E. (1993).  Evaluation of an 

avionics troubleshooting tutoring system, Technical Report, Armstrong Laboratory, 
Brooks Air Force Base, Texas.

Nilsson, N.J. (1980).  Principles of Artificial Intelligence, Palo Alto: Tioga.
Nilsson, N.J. (1986).  Probabilistic reasoning, Artificial Intelligence, 28, 71-87.
Ohlsson, S. (1991).  System hacking meets learning theory: reflections on the goals and 

standards of research in artificial intelligence and education, Journal of Artificial 
Intelligence in Education, 2, 3, 5-18.

Ohlsson, S. (1992).  Artificial instruction: a method for relating learning theory to instructional 
design, in M. Jones and P.H. Winne (eds.), Adaptive Learning Environments, Berlin: 
Springer-Verlag.

Ohlsson, S. (1994).  Constraint-based student modelling, in J.E. Greer and G.I. McCalla 
(eds.), Student Modelling: the Key to Individualized Knowledge-Based Instruction, 
Berlin: Springer-Verlag.

Ohlsson, S. and Langley, P. (1988).  Psychological evaluation of path hypothese in cognitive 
diagnosis, in H. Mandl and A. Lesgold (eds.), Learning Issues for Intelligent Tutoring 
Systems, New York: Springer-Verlag. 

O'Shea, T. and Self, J.A. (1983).  Learning and Teaching with Computers: Artificial 
Intelligence in Education, Brighton: Harvester.

Paiva, A.M. and Self, J.A. (1995).  TAGUS: a user and learner modeling workbench, to 
appear in User Modeling and User-Adapted Interaction.

Palinscar, A.M. (1989).  Less chartered waters, Educational Researcher, 18, 4, 5-7.
Papert, S. (1980).  Mindstorms: Children, Computers and Powerful Ideas, New York: Basic 

Books.
Papert, S. (1990).  Introduction, in I. Harel (ed.), Constructionist Learning, MIT Media 

References    367   



laboratory, Cambridge, Mass.
Papert, S. (1993).  The Children's Machine, New York: Basic Books.
Payne, S.J. and Squibb, H.R. (1990).  Algebra mal-rules and cognitive accounts of error, 

Cognitive Science, 14, 445-481.
Peachey, D.R. and McCalla, G.I. (1986).  Using planning techniques in intelligent tutoring 

systems, International Journal of Man-Machine Studies, 24, 77-98.
Pearl, J. (1988).  Probabilistic Reasoning in Intelligent Systems, San Mateo: Morgan 

Kaufmann.
Perkins, D.N. and Salomon, G. (1989).  Are cognitive skills context-bound?, Educational 

Researcher, 18, 1, 16-25.
Piaget, J. (1967).  Biology and Knowledge, Paris: Gallimard.
Piaget, J. (1976).  The Grasp of Consciousness: Action and Concept in the Young Child, 

Cambridge, MA: Harvard University Press.
Pilkington, R.M., Hartley, J.R., Hintze, D. and Moore, D. (1992).  Learning to argue and 

arguing to learn, Journal of Artificial Intelligence in Education, 3, 275-295.
Ploetzner, R. (1995).  Problem-oriented support of coordinated knowledge use in physics.
Pollack, M.E. (1990).  Plans as complex mental attitudes, in P.R. Cohen, J. Morgan and 

Pollack, M.E. (eds.), Intentions in Communication, Cambridge, Ma.: MIT Press.
Pollack, M.E. (1992).  The uses of plans, Artificial Intelligence, 47, 43-68.
Pollock, J.L. (1992).  How to reason defeasibly, Artificial Intelligence, 57, 1-42.
Polson, M.C. and Richardson, J.J., eds. (1988).  Foundations of Intelligent Tutoring 

Systems, Hillsdale, N.J.: Erlbaum.
Poole, D.L. (1988).  A logical framework for default reasoning, Artificial Intelligence, 36, 

27-47.
Poole, D.L. (1994).  Probabilistic Horn abduction and Bayesian networks, Artificial 

Intelligence, 64, 81-129.
Posner, G., Strike, K., Hewson, P. and Gertzog, W. (1982).  Accommodation of a scientific 

conception: toward a theory of conceptual change, Science Education, 66, 211-227.
Pressley, M., Snyder, B.L. and Cariglia-Bull, T. (1987).  How can good strategy use be 

taught to children?  Evaluation of six alternative approaches, in S.M. Cormier and J.D. 
Hagman (eds.), Transfer of Learning, New York: Academic.

Quinlan, J.R. (1986).  Induction of decision trees, Machine Learning, 1, 81-106.
Reed, S.K. (1993).  A schema-based theory of transfer, in D.K. Detterman and R.J. Sternberg 

(eds.), Transfer on Trial: Intelligence, Cognition, and Instruction, Norwood, NJ: Ablex.
Regian, W. and Shute, V.J., eds. (1992).  Cognitive Approaches to Automated Instruction, 

Hillsdale, N.J.: Lawrence Erlbaum.
Reichman, P. (1985).  Getting Computers to Talk Like You and Me, Cambridge, MA.: MIT 

Press.
Reigeluth, C.M. (1993).  Functions of an automated instructional design system, in J.M. 

Spector, M.C. Polson and D.J. Muriada (eds.), Automating Instructional Design, 
Englewood Cliffs, NJ: Educational Technology Publications.

Reiter, R. (1987a).  Nonmonotonic reasoning, Annual Review of Computer Science, 2, 
147-186.

Resnick, L.B. (1989).  Introduction, in L.B. Resnick (ed.), Knowing, Learning, and 
Instruction, Hillsdale, N.J.: Lawrence Erlbaum.

Reusser, K. (1993).  Tutoring systems and pedagogical theory: representational tools for 

368    Computational Mathetics



understanding, planning, and reflection in problem-solving, in S. Lajoie and S. Derry 
(eds)., Computers as Cognitive Tools, Hillsdale, N.J.: Erlbaum.

Rich, E. (1989).  Stereotypes and user modeling, in A. Kobsa and W. Wahlster (eds.), User 
Models in Dialog Systems, Berlin: Springer-Verlag.

Rich, E. and Knight, K. (1991).  Artificial Intelligence, New York: McGraw-Hill.
Roberts, A. and Mountford, C.P. (1969).  The Dawn of Time, Adelaide: Rigby Ltd.
Roos, N. (1992).  A logic for reasoning with inconsistent knowledge, Artificial Intelligence, 

57, 69-103.
Roth, S.F. and Hefley, W.E. (1993).  Intelligent multimedia presentatio systems: research 

and principles, in M.T. Maybury (ed.), Intelligent Multimedia Interfaces, Menlo Park: 
AAAI Press.

Russell, S.J., Subramanian, D. and Parr, R. (1993).  Provably bounded optimal agents, 
Proc. of the Int. Joint Conference on Artificial Intelligence, Chambery.

Ryle, G. (1949).  The Concept of Mind, New York: Barnes & Noble, Inc.
Sack, W., Soloway, E. and Weingrad, P. (1994).  Re-writing Cartesian student models, 

in J.E. Greer and G.I. McCalla (eds.), Student Modelling: the Key to Individualized 
Knowledge-Based Instruction, Berlin: Springer-Verlag.

Sandberg, J. and Weilinga, B. (1992).  Situated cognition: a paradigm shift?, Journal of 
Artificial Intelligence in Education, 3, 129-138.

Schank, R.C. (1990).  Case-based teaching: four experiences in educational software 
design, Interactive Learning Environments, 1, 231-254.

Schank, R.C. and Cleary, C. (1995).  Engines for Education, San Mateo: Morgan  
Kaufman.

Schank, R.C. and Edelson, D.J. (1989).  Discovery systems, in D. Bierman, J. Breuker and 
J. Sandberg (eds.), Artificial Intelligence and Education, Amsterdam: IOS.

Schoenfeld, A.H., ed. (1987).  Cognitive Science and Mathematics Education, Hillsdale, 
N.J.: Lawrence Erlbaum.

Schofield, J.W., Evans-Rhodes, D. and Huber, B.R. (1990).  Artificial intelligence in the 
classroom: the impact of a computer-based tutor on teachers and students, Social Science 
Computer Review, 8, 24-41.

Searle, J.R. (1976).  A classification of illocutionary acts, Language in Society, 5, 1-23.
Self, J.A., ed. (1988).  Artificial Intelligence and Human Learning, London: Chapman and 

Hall.
Self, J.A. (1990). Theoretical foundations of intelligent tutoring systems, Journal of 

Artificial Intelligence in Education, 1, 4, 3-14.
Self, J.A. (1992).  Computational mathetics: the missing link in intelligent tutoring systems 

research, in E. Costa (ed.), New Directions for Intelligent Tutoring Systems, Berlin: 
Springer-Verlag, 295-352.

Self, J.A. (1993).  Model-based cognitive diagnosis, User Modeling and User-Adapted 
Interaction, 3, 89-106.

Self, J.A. (1995).  Dormorbile: a vehicle for metacognition, in T.-W. Chan and J.A. Self 
(eds.), Emerging Computer Technologies in Education, Charlottesville: AACE.

Shanahan, M. (1993).  Explanation in the situation calculus, Proc. of the Int. Joint 
Conference on Artificial Intelligence, Chambery. 

Shevell, R.S. (1983).  Fundamentals of Flight, Englewood Cliffs: Prentice-Hall.
Shoham, Y. (1993).  Agent-oriented programming, Artificial Intelligence, 60, 51-92..

References    369   



Shortliffe, E.H. (1976).  Computer-based Medical Consultation: MYCIN, New York: 
Elsevier.

Shute, V.J. (1993).  A macroadaptive approach to tutoring, Journal of Artificial Intelligence 
in Education, 4, 61-93.

Shute, V.J. and Bonar, J. (1986).  An intelligent tutoring systems for scientific inquiry skills, 
Proc. of the 8th Cognitive Science Society Conference, Amherst.

Shute, V.J. and Glaser, R. (1990).  A large-scale evaluation of an intelligent discovery 
world: Smithtown, Interactive Learning Environments, 1, 51-78.

Shute, V.J. and Psotka, J. (1994).  Intelligent tutoring systems: past, present and future, to 
appear in D. Jonassen (ed.), Handbook of Research on Educational Communications 
and Technology.

Sime, J. (1993).  Modelling a learner's multiple models with Bayesian belief networks, 
Proc. of Artificial Intelligence in Education 1993, Edinburgh.

Singley, M.K. (1990).  The reification of goal structures in a calculus tutor: effects on 
problem-solving performance, Interactive Learning Environments, 1, 102-123.

Singley. M.K. and Anderson, J.R. (1989).  The Transfer of Cognitive Skill, Cambridge, 
MA: Harvard Univ. Press.

Slade, S. (1991).  Case-based reasoning: a research paradigm, AI Magazine, 12, 1, 42-55.
Sleeman, D.H., Kelly, A.E., Martinak, R., Ward, R.D. and Moore, J.L. (1989).  Studies of 

diagnosis and remediation with high school algebra students, Cognitive Science, 13, 
551-568.

Sleeman, D.H. and Smith, M.J. (1981).  Modelling students' problem solving, Artificial 
Intelligence, 16, 171-187.

Smith, D.A., Greeno, J.G. and Vitolo, T.M. (1989).  A model for competence for counting, 
Cognitive Science, 13, 183-211.

Snow, R.E. (1990).  Toward assessment of cognitive and conative structures in learning, 
Educational Researcher, 18, 9, 8-14.

Soloway, E., Guzdial, M., Brade, K., Hohmann, L., Tabak, I., Weingrad, P. and Blumenfeld, 
P. (1992).  Technological support for the learning and doing of design, in M. Jones and 
P.H. Winne (eds.), Adaptive Learning Environments, Berlin: Springer-Verlag.

Spada, H. (1993).  How the role of cognitive modeling for computerized instruction is 
changing, Proc. of the World Conference on Artficial Intelligence in Education, 
Edinburgh: AACE.

Spector, J.M. (1993).  Introduction, in J.M. Spector, M.C. Polson and D.J. Muriada (eds.), 
Automating Instructional Design, Englewood Cliffs, NJ: Educational Technology 
Publications.

Strawson, P.E. (1971).  Intention and convention in speech acts, in J.R. Searle (ed.), The 
Philosophy of Language, London: Oxford Univ. Press.

Sycara, K. (1989).  Multiagent compromise via negotiation, in L. Gasser and M.N. Huhns 
(eds.), Distributed Artificial Intelligence II, San Mateo: Morgan Kaufmann.

Tattersall, C. (1992).  Generating help for users of application software, User Modeling and 
User-Adapted Interaction, 2, 211-248.

Teasley, S.D. and Roschelle, J. (1993).  Constructing a joint problem space: the computer 
as a tool for sharing knowledge, in S.P. Lajoie and S.J. Derry (eds.), Computers as 
Cognitive Tools, Hillsdale: Erlbaum.

Twidale, M.B. (1989).  Intermediate representations for student error diagnosis and support, 

370    Computational Mathetics



in D. Bierman, J. Breuker and J. Sandberg (eds.), Artificial Intelligence and Education, 
Amsterdam: IOS.

Ur, S. and VanLehn, K. (1995).  STEPS: a simulated, tutorable physics student, to appear 
in Journal of Artificial Intelligence in Education, 6.

Van Arragon, P. (1991).  Modeling default reasoning using defaults, User Modeling and 
User-Adapted Interaction, 1, 259-288.

Van Joolingen, W. (1994).  QMaps: Qualitative reasoning for simulation learning 
environments, Journal of Artificial Intelligence in Education, 5, 177-198.

VanLehn, K. (1982).  Bugs are not enough: empirical studies of bugs, impasses and repairs 
in procedural skill, Journal of Mathematical Behaviour, 3, 3-71.

VanLehn, K. (1987).  Learning one subprocedure per lesson, Artificial Intelligence, 31, 
1-40.

VanLehn, K. (1988).  Toward a theory of impasse-driven learning, in H. Mandl and A. 
Lesgold (eds.), Learning Issues for Intelligent Tutoring Systems, New York: Springer.

VanLehn, K. (1990).  Mind Bugs: the Origins of Procedural Misconceptions, Cambridge, 
Mass.: MIT Press.

VanLehn, K. (1991).  Two pseudo-students: applications of machine learning to formative 
evaluation, in R. Lewis and S. Otsuki (eds.), Advanced Research on Computers in 
Education, Amsterdam: Elsevier.

VanLehn, K. (1993).  Cascade: a simulation of human learning and its applications, Proc. of 
the World Conference on Artficial Intelligence in Education, Edinburgh: AACE.

VanLehn, K., Jones, R.M. and Chi, M.T.H. (1992).  A model of the self-explanation effect, 
Journal of the Learning Sciences, 2, 1-59.

VanLehn, K., Ohlsson, S. and Nason, R. (1994).  Applications of simulated students: an 
exploration, Journal of Artificial Intelligence in Education, 5, 135-175.

Vera, A.H. and Simon, H.A. (1993).  Situated action: a symbolic interpretation, Cognitive 
Science, 17, 7-48.

Vila, L. (1994).  A survey of temporal reasoning in artificial intelligence, AI Communications, 
7, 1, 4-28.

Villano, M. (1992).  Probabilistic student models: Bayesian belief networks and knowledge 
space theory, in C. Frasson, G. Gauthier and G.I. McCalla (eds.), Intelligent Tutoring 
Systems, Berlin: Springer-Verlag.

Vosniadou, S. (1992).  Fostering conceptual change: the role of computer based 
environments, in E. De Corte, H.C. Linn, H. Mandl and L. Verschaflel (eds.), Computer-
Based Learning Environments and Problem Solving, Berlin: Springer-Verlag.

Vygotsky, L.S. (1978).  Mind in Society, Cambridge, Mass.: Harvard University Press.
Waern, A. (1994).  Plan inference for a purpose, Proc. of the 4th Int. Conf. on User 

Modeling, Cape Cod.
Wahlster, W., André, E., Finkler, W., Profitlich, H-J., and Rist, T. (1993).  Plan-based 

integration of natural language and graphics generation, Artificial Intelligencem 63, 
387-427.

Webb, G.I. (1993).  Feature based modelling, Proceedings on the World Conference on 
Artificial Intelligence in Education, Edinburgh.

Wenger, E. (1987).  Artificial Intelligence and Tutoring Systems, Los Altos: Morgan 
Kaufmann.

Wexler, J.D. (1970).  Information networks in generative computer-assisted instruction, 

References    371   



IEEE Trans. on Man-Machine Systems, 11, 181-190.
Weyhrauch, R. (1980).  Prolegomena to a theory of mechanized formal reasoning, Artificial 

Intelligence, 13, 133-170.
White, B.Y. (1993).  Intermediate causal models: a missing link for successful science 

education?, in R. Glaser (ed.), Advances in Instructional Psychology, 4, 177-250.
White, B. and Frederiksen, J. (1990).  Causal model progressions as a foundation for 

intelligent learning environments, Artificial Intelligence, 24, 99-157.
Whitehead, A.N. (1932).  The Aims of Education, London: Benn.
Wilkin, B. (1994).  The self-explanation effect with self-generated diagrams, Technical 

Report CSM-9, UC Berkeley,
Wilks, Y. and Ballim, A. (1987).  Multiple agents and the heuristic ascription of beliefs, 

Proc. of the Int. Joint Conf. on Artificial Intelligence, 118-124.
Wineburg, S.S. (1989).  Remembrance of theories past, Educational Researcher, 18, 4, 

7-10.
Winne, P.H. (1993).  A landscape of issues in evaluating adaptive learning systems, Journal 

of Artificial Intelligence in Education, 4, 309-332.
Winograd, T. (1975).  Frame representations and the declarative/procedural controversy, 

in D. Bobrow and A. Collins (eds.), Representation and Understanding, New York: 
Academic Press.

Winston, P.H. (1992).  Artificial Intelligence, Reading, Mass: Addison-Wesley.
Wogulis, J. and Pazzani, M.J. (1993).  A methodology for evaluating theory revision 

systems, Proceedings of the International Joint Conference on Artificial Intelligence, 
Chambery.

Wooldridge, M.J. and Jennings, N.R. (1994a).  Intelligent agents: theory and practice, 
Knowledge Engineering Review.

Wooldridge, M.J. and Jennings, N.R. (1994b).  Formalizing the cooperative problem 
solving process, Proc. of the 13th Int. Workshop on Distributed Artificial Intelligence, 
Lake Quinalt, WA.

Woolf, B. (1988).  Representing complex knowledge in an intelligent machine tutor, in J.A. 
Self (ed.), Artificial Intelligence and Human Learning, Chapman and Hall.

Wu, D. (1991).  Active acquisition of user models: implications for decision-theoretic 
dialog planning and plan recognition, User Modeling and User-Adapted Interaction, 1, 
149-172.

Zadeh, L. (1987).  Commonsense and fuzzy logic, in N. Cercone and G. McCalla (eds.), 
The Knowledge Frontier: Essays in the Representation of Knowledge, New York: 
Springer-Verlag.

372    Computational Mathetics



Index

automatic programming  187, 251, 
275-276

awareness  123-126, 181, 191, 214, 
294

background belief  97
Bayesian network  41, 140-142, 271-

273, 284
behaviour  75-77
belief  66-70, 75-79, 82, 87-92, 95, 

119-120
belief revision  33, 41, 114, 136, 207, 

223-228, 237, 278
belief-set  96, 99, 102
blackboard systems  344
bounded optimality  190
BRIDGE  21, 151
bug  29, 255-261, 268-269
bug catalogue  42, 48, 264
bug migration  218
buggy plan catalogue  288-289

Cascade  33, 220-222
case-based learning  29-30, 50, 214
case-based planning  184
case-based reasoning  29, 223, 319
case-based teaching  29, 222-223
causally connected  163-164
certainty factor  139
chunking  217
circumscription  129-131, 134, 279-

280, 286-287
clarification dialogue  295-296
closed-world assumption  129-130
cognitive apprenticeship  25, 63, 

157, 161, 197, 351

abstract monitor  167
abstract reasoner  114-116
abstract reflector  194
acceptance  119-121, 322
achievement goal  186
ACM  274
ACT*  27-28, 62, 222, 331
action  104-107, 146-148, 182-188, 

198-199
action schema  198-199
ACTR  243
affect  34-35, 210-212
affordance  199
agent  32, 66-69, 77-81
agent-oriented programming  66-69
AGM  227-228
AlgebraLand  22, 63, 151, 161-163, 

183, 189, 219
AM  237
analogical reasoning  222
analogical search control  222
analogy  221-223
analytical learning  215-228
anomalous data  224-227, 278
aptitude  170, 209
aptitude-treatment interaction  209
argument  120, 127, 240, 308, 316-

318, 320-321
argumentation  191, 307-308, 316-

317, 320
assessment  40-42
ATMS  226-228, 278-279
attention  126, 197, 210, 280, 339-

340
autoepistemic logic  133-134, 165, 

216

Index    373   



default reasoning  208, 228, 267-268
defeasible reasoning  127, 316
derivational analogy  222
diagnosis  15, 246-297, 315
diagrammatic reasoning  148-153
dialogue  32-33, 120, 298-327, 342-

343
dialogue game theory  32, 307-308, 

311, 351
differential modelling  259-260
discourse  38, 200-201, 300-305, 

326, 351
discourse analysis  302-303, 307
discourse generation  304
discourse management network  343
discourse planning  304, 315
discourse procedure  342-343
distributed AI  33, 154-155, 201, 

318, 32-321
distributed metacognition  200-203
distributed problem-solving  154, 

320
distributed reasoning  153-156
domain  96-97
domain belief  96-97, 115
Dormorbile  194
DUSTIN  29
dynamic logic  186

EDGE  315-316
EES  312, 314
emendation procedure  352
empirical abstraction  191
endorsement  278
Envisioning Machine  201
epistemic entrenchment  228
evaluation  39-42, 63-64, 72, 355-

356
evaluation function  188
expert system  8, 22, 106, 261, 312
explanation  12, 99, 145, 195, 219, 

cognitive conflict  217
coherence theory  226
coherent situation  122
collaboration  200-203, 354-355
collaborative learning  35, 38, 62, 

103, 153, 202, 240-242
collaborative planning  103, 202
collaborative problem-solving  153-

155, 200-201
commitment  32, 66, 203
commitment store  307-308
common knowledge  102-103, 201, 

208
community  154
community of practice  26, 61, 95
compilation  171
concept formation  230
concept learning  41, 229-235, 274
conceptual change  223-228
concrete reasoner  115-116
concrete monitor  167
concrete reflector  194
conjunctive normal form  84, 110
connectionism  26-27
consequentially closed  88-89
consistency  91, 118, 133, 277-278
constructive induction  234-237
constructivism  23-25, 28, 52-53, 

328
context  93-94, 96-97, 99, 102, 161, 

263, 270
contract net  320-321
cooperation  203, 318-319
counterfactual reasoning  136
culture  9-10, 46-47, 52-53, 95-96
curriculum planning  315, 346-347

DECIDER  29-30
declarative reflection  164
declarative/procedural  105-106
default logic  131-133

374    Computational Mathetics



280, 311-316, 318
explanation-based diagnosis  262-

264
explanation-based learning  218-221, 

262, 264, 273-274, 312
explanation-based learning of 

correctness  220, 244
explicit belief  121-126
extended overlay  260
extension, of a theory  132

failure-driven learning  28-29, 217-
218

fault-based diagnosis  260-262
faulty plan  288-290
feature-based modelling  270, 273, 

279
felicity condition  306
follow-on question  313-314, 326
formative evaluation  39-42
foundational theory  226
frame  98, 107
frame of mind  125-126
frame problem  147-148, 184, 279
fuzzy logic  41, 139

general awareness  124-125
general cognitive skills  159
generalisation  170-171, 219, 232, 

240, 263, 333
Geometry tutor  33, 39, 151
GIL  152
goal  185-186
goal-driven diagnosis  281-284
GREATERP  21, 23, 26-28, 30, 36
group instruction  347, 353-355
GUIDON  22, 26, 48, 342-343

ID3  232, 274
impasse  28-29, 217-218, 220-222, 

243, 333, 352

impasse-based learning  217-218, 
261, 332

impasse-driven learning  28
implicit belief  121-123, 309
inconsistency  181, 277-278, 307-

308
inconsistent belief  111, 124-125
inconsistent knowledge  135-136
individual differences  204, 332
individualised instruction 128
inductive diagnosis  268-276
inductive learning  215-216, 222, 

228-237, 273
inductive logic programming  234-

236, 241-242, 275
inert ideas  104
instructional design  34, 37, 39, 48, 

328-330, 340, 355
instructional goal  332, 334-335
instructional planning  184, 282-283, 

341-347
instructional systems design  328, 

337-341, 347
intelligent help  187, 312-313
intelligent multimedia system  325
intelligent tutoring system  46-48
intention  186-187, 202-203, 209
interactive diagnosis  294-297
interactivism  25
interpretation  85-86
introspection  90-91, 119, 124, 133, 

165
ISD  337-341

JASPER  30
JPS, joint problem space  200-202
justification  78-79, 91, 226-227, 

278, 352

knowledge  20-27, 50-52, 69, 75-107
knowledge communication  23-24, 

Index    375   



189-190, 264-268
microplan  349-351
modal logic  68, 86-92, 103, 116-

121, 133, 165, 186, 309, 323
modal operator  68, 86-89, 94
model tracing  260, 273
model-based diagnosis  41, 250-259, 

269, 278, 281
modus ponens  90, 112-115, 166-

167, 172-173, 179
modus tolens  112, 166-168, 172-173
monitor  166-171
monitoring  157-163, 179, 182, 188-

193
motivation  35, 209-212, 312, 329, 

338, 349-355
multi-agent belief revision  102, 117, 

228
multi-agent nonmonotonic reasoning 

134-135
multi-agent problem-solving  103, 

319
multimedia dialogue  324-327
multimedia explanation  326
multimedia interfaces  38
multiple representations  98-102

natural deduction  112, 172
negative introspection  91, 119
negotiation  35, 119, 203, 318-324
nesting of beliefs  77, 102, 117
neural network  26-27, 41, 233-234, 

273
nonmonotonic reasoning  127-137, 

144, 147-148, 184, 228, 288, 
316-317

nonstandard logic  84, 113-116, 129

objectives  329, 337-339, 346
objectivism  20-23, 26-31, 34, 36, 

51-52

46-48
knowledge compilation  214-215
knowledge construction  25, 32, 80-

81, 95
knowledge representation  20-25, 

75-107
knowledge sharing  307
knowledge transmission  35, 51, 69, 

81, 95
knowledge-set  96, 102
KQML  306-307

learning hierarchy  339, 346
lesson  341, 345-347
limited reasoning  91, 121-127, 133-

135, 178, 181
LNT  132, 181-182
local reasoning  121, 124-127
logic  82-86
logical omniscience  91, 119, 122, 

125
logicism  86, 149
LOGO  24, 30

maintenance goal  186
malrule  218
mathetics, meaning of  59
mediation  202, 319
MENO-TUTOR  343
mental model  61, 99, 145
meta-bug  261-262
meta-circular interpreter  164
meta-level architecture  157, 163-165
meta-level predicate  123, 133, 180-

182, 265
meta-programming  41
metacognition  22, 47, 155, 157-212
metacognitive schema  165-182
metaknowledge  157, 163, 165
metamicrotheory  319
metareasoning  157, 165, 178-182, 

376    Computational Mathetics



overlay  260, 315
partial worlds  122-123
People-Power  24, 240
perception  215-216
perceptron  233
perceptual learning  215-216
performative  68, 92, 305-307
persistent goal  186, 309
Persuader  320-321
PETAL  63-64
plan  151-152, 158, 174, 178, 182-

188
plan diagnosis  284-294
plan generation  163, 187
plan recognition  187, 284-290, 292-

292
plan-based misconception  289
planning  37, 182-188
PORSCHE  312-313
positive introspection  90, 124
possible worlds  90-91, 123
potential intention  203
PPP  326
pragmatic reasoning schema  114-

115
pragmatics  300
predicate logic  20, 68, 82-93, 98-99, 

110-116, 121, 138, 147, 189, 235
principle of rationality  80
probabilistic logic  138-139
probabilistic reasoning  137-142
problem generation  296
problem-specific belief  96-97, 199
production system  20, 27, 60, 106, 

110, 174, 197
proposition  62, 66, 78-79, 82-86

QMaPs  145
QP theory  144-146
qualitative reasoning  31, 142-148
QUEST  31, 145

rational dialogue  308-311
rationality  80, 190, 309
reactive planning  247, 343
reason maintenance  225, 317
reasoner  109-113
reasoner-set  110
reasoning schema  109
reasoning-congruent environment  

151
referentially opaque  87, 138, 185
reflected abstraction  191
reflection  63, 161-164, 188-191, 

292-293, 353
reflector  192-197, 213-214, 219
reification  93, 147
relevance logic  114, 122
repair theory  29, 217, 261
resolution  41, 110-112, 121, 127, 

180-181, 226
rhetorical predicate  312-313
rhetorical structure theory  303
RST  303-304, 312

satisfiable  85
SEDAF  180-182
self-directed learning  62-63, 238
self-explanation  33, 194-195, 220, 

240
self-explanatory simulation  145
sentential semantics  86, 91
Sepia  146
Sherlock  36, 38-39, 49, 270
Sickle Cell Counselor  29
simulated student  40, 242-245, 273
situated automata  187
situated cognition  25, 105-107, 197
situated learning  45, 95, 197-199, 

237-239
situated plan attribution  292
situation  92-95, 99, 112, 122-125, 

147-148, 185, 196-199, 332

Index    377   



378    Computational Mathetics

situation calculus  92-95, 147, 173, 
184, 279, 309

situation semantics  122
situationism  25-29, 35, 37, 53-54, 

95, 105-107, 198, 288
slip  136, 257, 267-270, 277, 291
SMITHTOWN  39
SOAR  28, 164-165, 188, 217-218, 

243, 331
social learning  37, 215, 239-242
socially-distributed production  200-

202
society of agents  102
socio-technical design  34, 47
SOPHIE  31, 49, 143
Space Shuttle Fuel Cell Tutor  36, 

40, 49
speech acts  305-307, 323-325
SPENGELS  20, 49
state  93
STATICS tutor  39
statistical reasoning  137
STEPS  244
stereotype  207-209, 314-315
stereotypical reasoning  208
student model maintenance  277-279
substitution  85

task analysis  339-341
temporal explanation  279
temporal logic  146-148, 187
temporal reasoning  146
THEMIS  275-276
theorem  85, 111
theory of communication  309-310
theory of instruction  213, 280, 330-

338
theory of tutorial guidance  349
theory revision  226, 237, 275
ThinkerTools  32, 224
TIERESIAS  164

transfer  31, 116, 159, 196-199
trigger function  206
tutoring  347-353

universal subgoaling  188
user-participatory design  34

version spaces  230-232, 274
virtual reality  37-38, 46, 324
vocabulary  96

weak S4  90, 94, 124-125, 186
WEST  30, 37
WHY  23, 29
WIP  326



Computational Mathetics: 
Towards a Science of 

Learning Systems Design
ISBN 

978-0-9858986-6-1


